The accurate prediction of protein-ligand binding affinity belongs to one of the central goals in computer-based drug design. Molecular dynamics (MD)-based free energy calculations have become increasingly popular in this respect due to their accuracy and solid theoretical basis. Here, we present a combined study which encompasses experimental and computational studies on two series of factor Xa ligands, which enclose a broad chemical space including large modifications of the central scaffold.
View Article and Find Full Text PDFLabeled chemical probes are of utmost importance to bring drugs from the laboratory through the clinic and ultimately to market. They support and impact all research and discovery phases: target verification and validation; assay development; lead optimization; and biomarker engagement in the context of preclinical studies and human trials. Probes should display high potency and selectivity as well as fulfill specific criteria in connection with absorption, distribution, metabolism, excretion and toxicology (ADMET) profile.
View Article and Find Full Text PDFDendritic cells (DC) are antigen-presenting cells coordinating the interplay of the innate and the adaptive immune response. The endocytic C-type lectin receptors DC-SIGN and Langerin display expression profiles restricted to distinct DC subtypes and have emerged as prime targets for next-generation immunotherapies and anti-infectives. Using heteromultivalent liposomes copresenting mannosides bearing aromatic aglycones with natural glycan ligands, we serendipitously discovered striking cooperativity effects for DC-SIGN but not for Langerin cell lines.
View Article and Find Full Text PDFProtein-glycan interactions mediate important biological processes, including pathogen host invasion and cellular communication. Herein, we showcase an expedite approach that integrates automated glycan assembly (AGA) of F-labeled probes and high-throughput NMR methods, enabling the study of protein-glycan interactions. Synthetic Lewis type 2 antigens were screened against seven glycan binding proteins (GBPs), including DC-SIGN and BambL, respectively involved in HIV-1 and lung infections in immunocompromised patients, confirming the preference for fucosylated glycans (Le , H type 2, Le ).
View Article and Find Full Text PDFHuman blood group related glycan antigens are fucosylated (neo-)lactoseries oligosaccharides that play crucial roles in pathogenic processes. Lewis type-II-chain antigens mark the surface of cancer cells, but are also mediators of bacterial infections. To investigate the biological roles of Lewis type glycans a host of synthetic approaches has been developed.
View Article and Find Full Text PDFThe intrinsic complexity of carbohydrate structures has hampered access to pure glycans and hence impeded progress in the glycosciences. Automated Glycan Assembly (AGA) has facilitated the procurement of synthetic glycans, to be used in diagnostics, vaccine development, enzyme characterization and structure-function relationship studies. A general approach for obtaining complex glycans from mammalian, bacterial, fungal and plant classes provides molecular tools for glycobiology research.
View Article and Find Full Text PDF