Publications by authors named "Monica Graham"

Unlabelled: Plaque assay is the gold standard for the quantification of viable cytopathic viruses like Zika virus (ZIKV). Some strains of ZIKV produce plaques that are very difficult to accurately visualize and count on the commonly used Vero cell line. From data generated in our lab, we became curious if Vero/TMPRSS2 cells may be a better alternative; therefore, we compared the plaque forming units of two strains of ZIKV on Vero/TMPRSS2 cells to those produced by Vero cells.

View Article and Find Full Text PDF

All flaviviruses contain conserved RNA structures in the 3' untranslated region (3' UTR) that are important for flavivirus RNA replication, translation, and pathogenesis. Flaviviruses like Zika virus (ZIKV) contain multiple conserved RNA structures in the viral 3' UTR, including the structure known as dumbbell-1 (DB-1). Previous research has shown that the DB-1 structure is important for flavivirus positive-strand genome replication, but the functional role of the flavivirus DB-1 structure and the mechanism by which it contributes to viral pathogenesis are not known.

View Article and Find Full Text PDF

Nestled within the Rocky Mountain National Forest, 114 scientists and students gathered at Colorado State University's Mountain Campus for this year's 21st annual Rocky Mountain National Virology Association meeting. This 3-day retreat consisted of 31 talks and 30 poster presentations discussing advances in research pertaining to viral and prion diseases. The keynote address provided a timely discussion on zoonotic coronaviruses, lessons learned, and the path forward towards predicting, preparing, and preventing future viral disease outbreaks.

View Article and Find Full Text PDF

Mosquito-borne flaviviruses (MBFVs) including dengue, West Nile, yellow fever, and Zika viruses have an RNA genome encoding one open reading frame flanked by 5' and 3' untranslated regions (UTRs). The 3' UTRs of MBFVs contain regions of high sequence conservation in structured RNA elements known as dumbbells (DBs). DBs regulate translation and replication of the viral RNA genome, functions proposed to depend on the formation of an RNA pseudoknot.

View Article and Find Full Text PDF

Synonymous codon choice can have dramatic effects on ribosome speed and protein expression. Ribosome profiling experiments have underscored that ribosomes do not move uniformly along mRNAs. Here, we have modeled this variation in translation elongation by using a feed-forward neural network to predict the ribosome density at each codon as a function of its sequence neighborhood.

View Article and Find Full Text PDF

Targeting of human cancer stem cells (CSCs) requires the identification of vulnerabilities unique to CSCs versus healthy resident stem cells (SCs). Unfortunately, dysregulated pathways that support transformed CSCs, such as Wnt/β-catenin signaling, are also critical regulators of healthy SCs. Using the ICG-001 and CWP family of small molecules, we reveal Sam68 as a previously unappreciated modulator of Wnt/β-catenin signaling within CSCs.

View Article and Find Full Text PDF

The clinical use of human embryonic stem cells (hESCs) requires efficient cellular expansion that must be paired with an ability to generate specialized progeny through differentiation. Self-renewal and differentiation are deemed inherent hallmarks of hESCs and a growing body of evidence suggests that initial culture conditions dictate these two aspects of hESC behavior. Here, we reveal that defined culture conditions using commercial mTeSR1 media augment the expansion of hESCs and enhance their capacity for neural differentiation at the expense of hematopoietic lineage competency without affecting pluripotency.

View Article and Find Full Text PDF

Hematopoietic cells derived from human embryonic stem cells (hESCs) have a number of potential utilities, including the modeling of hematological disorders in vitro, whereas the use for cell replacement therapies has proved to be a loftier goal. This is due to the failure of differentiated hematopoietic cells, derived from human pluripotent stem cells (hPSCs), to functionally recapitulate the in vivo properties of bona fide adult hematopoietic stem/progenitor cells (HSPCs). To better understand the limitations of differentiation programming at the molecular level, we have utilized differential gene expression analysis of highly purified cells that are enriched for hematopoietic repopulating activity across embryonic, fetal, and adult human samples, including in vivo explants of human HSPCs 8-weeks post-transplantation.

View Article and Find Full Text PDF

Selective targeting of cancer stem cells (CSCs) offers promise for a new generation of therapeutics. However, assays for both human CSCs and normal stem cells that are amenable to robust biological screens are limited. Using a discovery platform that reveals differences between neoplastic and normal human pluripotent stem cells (hPSC), we identify small molecules from libraries of known compounds that induce differentiation to overcome neoplastic self-renewal.

View Article and Find Full Text PDF

Kaiso is a dual-specificity POZ-ZF transcription factor that regulates gene expression by binding to sequence-specific Kaiso binding sites (KBS) or methyl-CpG dinucleotide pairs. Kaiso was first identified as a binding partner for the epithelial cell adhesion regulator p120(ctn). The p120(ctn)/Kaiso interaction is reminiscent of the beta-catenin/TCF interaction and several studies have suggested that Kaiso is a negative regulator of the Wnt/beta-catenin TCF signaling pathway.

View Article and Find Full Text PDF

Znf131 is a member of the BTB/POZ family of transcription factors with roles in development and carcinogenesis. Like many members of this protein family, Znf131 displays robust nuclear localization in cultured cells, but the mechanism(s) of Znf131 nuclear trafficking is unknown. Here, we report the mechanism of Znf131 nuclear localization.

View Article and Find Full Text PDF

The POZ-zinc finger transcription factor Kaiso was first identified as a specific binding partner for the Armadillo catenin and cell adhesion cofactor, p120ctn. Kaiso is a unique POZ protein with bi-modal DNA-binding properties; it associates with a sequence-specific DNA consensus Kaiso binding site (KBS) or methylated CpG dinucleotides, and regulates transcription of artificial promoters containing either site. Interestingly, the promoter of the Wnt/beta-catenin/TCF target gene matrilysin possesses two conserved copies of the KBS, which suggested that Kaiso might regulate matrilysin expression.

View Article and Find Full Text PDF

Kaiso is a BTB/POZ transcription factor that functions in vitro as a transcriptional repressor of the matrix metalloproteinase gene matrilysin and the non-canonical Wnt signaling gene Wnt-11, and as an activator of the acetylcholine-receptor-clustering gene rapsyn. Similar to other BTB/POZ proteins (e.g.

View Article and Find Full Text PDF