Publications by authors named "Monica Gorbe"

Gold nanostars coated with a mesoporous silica shell and functionalized with poly(ethylene glycol) containing photolabile 2-nitrobenzyl moieties are able to release doxorubicin after NIR light irradiation at low power irradiance via a multiphoton absorption photo-dissociation process.

View Article and Find Full Text PDF

Janus gold nanostar-mesoporous silica nanoparticle (AuNSt-MSNP) nanodevices able to release an entrapped payload upon irradiation with near infrared (NIR) light were prepared and characterized. The AuNSt surface was functionalized with a thiolated photolabile molecule (5), whereas the mesoporous silica face was loaded with a model drug (doxorubicin) and capped with proton-responsive benzimidazole-β-cyclodextrin supramolecular gatekeepers (N 1). Upon irradiation with NIR-light, the photolabile compound 5 photodissociated, resulting in the formation of succinic acid, which induced the opening of the gatekeeper and cargo delivery.

View Article and Find Full Text PDF

Herein, a novel drug photorelease system based on gold nanostars (AuNSts), coated with a mesoporous silica shell and capped with paraffin as thermosensitive molecular gate, is reported. Direct measurements of the surface temperature of a single gold nanostar irradiated using a tightly focused laser beam are performed via a heat-sensitive biological matrix. The surface temperature of a AuNSt increases by hundreds of degrees (°C) even at low laser powers.

View Article and Find Full Text PDF

Within nanotechnology, gold and silver nanostructures have unique physical, chemical, and electronic properties [1,2], which make them suitable for a number of applications. Moreover, biosynthetic methods are considered to be a safer alternative to conventional physicochemical procedures for both the environmental and biomedical applications, due to their eco-friendly nature and the avoidance of toxic chemicals in the synthesis. For this reason, employing bio routes in the synthesis of functionalized silver nanoparticles (FAgNP) have gained importance recently in this field.

View Article and Find Full Text PDF

A new photosensitizer (1) based on the 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) scaffold has been synthesized. 1 is water soluble and showed an intense absorption band at 490 nm (ɛ=77,600 cm(-1)  m(-1)) and an emission at 514 nm. In vitro toxicity of 1 in the presence of light and in darkness has been studied with HeLa, HaCaT, MCF-7, and SCC-13 cell lines.

View Article and Find Full Text PDF

In recent years, mesoporous silica nanoparticles (MSNs) have been used as effective supports for the development of controlled-release nanodevices that are able to act as multifunctional delivery platforms for the encapsulation of therapeutic agents, enhancing their bioavailability and overcoming common issues such as poor water solubility and poor stability of some drugs. In particular, redox-responsive delivery systems have attracted the attention of scientists because of the intracellular reductive environment related to a high concentration of glutathione (GSH). In this context, we describe herein the development of a GSH-responsive delivery system based on poly(ethylene glycol)- (PEG-) capped MSNs that are able to deliver safranin O and doxorubicin in a controlled manner.

View Article and Find Full Text PDF