Publications by authors named "Monica Garcia Solache"

Unlabelled: Resistance to ampicillin and imipenem in is infrequent. However, the evolution of resistance can occur through prolonged antibiotic exposure during the treatment of chronic infections. In this study, we conducted a long-term evolution experiment using four genetically diverse strains of with varying susceptibilities to ampicillin and imipenem.

View Article and Find Full Text PDF

Unlabelled: Resistance to ampicillin and imipenem in is infrequent. However, the evolution of resistance can occur through prolonged antibiotic exposure during the treatment of chronic infections. In this study, we conducted a Long-Term Evolution Experiment (LTEE) using four genetically diverse strains of with varying susceptibilities to ampicillin and imipenem.

View Article and Find Full Text PDF

Ampicillin-ceftriaxone has become a first-line therapy for Enterococcus faecalis endocarditis. We characterized the penicillin-binding protein (PBP) profiles of various E. faecalis strains and tested for synergy to better inform beta-lactam options for the treatment of E.

View Article and Find Full Text PDF

The standard of care for serious Enterococcus faecalis infections is ampicillin plus ceftriaxone. Ampicillin's inconvenient dosing schedule, drug instability, allergy potential, along with ceftriaxone's high risk for Clostridioides difficile infection and its promotion of vancomycin-resistant enterococci (VRE), led our team to explore alternative options. This work aimed to understand the role of carbapenems in combination with cephalosporins in these infections.

View Article and Find Full Text PDF

The enterococci are ubiquitous bacteria able to colonize the human and animal gastrointestinal tracts and fresh and fermented food products. Their highly plastic genome allows Enterococcus spp. to gain resistance to multiple antibiotics, making infections with these organisms difficult to treat.

View Article and Find Full Text PDF

The genus comprises a ubiquitous group of Gram-positive bacteria that are of great relevance to human health for their role as major causative agents of health care-associated infections. The enterococci are resilient and versatile species able to survive under harsh conditions, making them well adapted to the health care environment. Two species cause the majority of enterococcal infections: and Both species demonstrate intrinsic resistance to common antibiotics, such as virtually all cephalosporins, aminoglycosides, clindamycin, and trimethoprim-sulfamethoxazole.

View Article and Find Full Text PDF

The final steps of cell-wall biosynthesis in bacteria are carried out by penicillin-binding proteins (PBPs), whose transpeptidase domains form the cross-links in peptidoglycan chains that define the bacterial cell wall. These enzymes are the targets of β-lactam antibiotics, as their inhibition reduces the structural integrity of the cell wall. Bacterial resistance to antibiotics is a rapidly growing concern; however, the structural underpinnings of PBP-derived antibiotic resistance are poorly understood.

View Article and Find Full Text PDF

strains resistant to penicillin and ampicillin are rare and have been associated with increases in quantities of low-affinity penicillin-binding protein 4 (PBP4) or with amino acid substitutions in PBP4. We report an strain (LS4828) isolated from a prosthetic knee joint that was subjected to long-term exposure to aminopenicillins. Subsequent cultures yielded with MICs of penicillins and carbapenems higher than those for wild-type strain JH2-2.

View Article and Find Full Text PDF

The transfer of DNA between Enterococcus faecium strains has been characterized both by the movement of well-defined genetic elements and by the large-scale transfer of genomic DNA fragments. In this work, we report on the whole-genome analysis of transconjugants resulting from mating events between the vancomycin-resistant E. faecium C68 strain and the vancomycin-susceptible D344RRF strain to discern the mechanism by which the transferred regions enter the recipient chromosome.

View Article and Find Full Text PDF

Enterococcus faecium is an important nosocomial pathogen, causing a substantial health burden due to high resistance to antibiotics and its ability to colonize the gastrointestinal tract. Here, we present the draft genome of vancomycin-susceptible, ampicillin-intermediate strain D344RRF, a rifampicin/fusidic acid-resistant and commonly used laboratory strain, which is useful in studying the transfer of antibiotic resistance.

View Article and Find Full Text PDF

Enterococcus faecium infections are a rising concern in hospital settings. Vancomycin-resistant enterococci colonize the gastrointestinal tract and replace nonresistant strains, complicating the treatment of debilitated patients. Here, we present a polished genome of the multiantibiotic-resistant strain C68, which was obtained as a clinical isolate and is a useful experimental strain.

View Article and Find Full Text PDF

Unlabelled: The intrinsic resistance of Enterococcus faecium to ceftriaxone and cefepime (here referred to as "cephalosporins") is reliant on the presence of class A penicillin-binding proteins (Pbps) PbpF and PonA. Mutants lacking these Pbps exhibit cephalosporin susceptibility that is reversible by exposure to penicillin and by selection on cephalosporin-containing medium. We selected two cephalosporin-resistant mutants (Cro1 and Cro2) of class A Pbp-deficient E.

View Article and Find Full Text PDF

Understanding the developmental and evolutionary dynamics of regulatory networks is essential if we are to explain the non-random distribution of phenotypes among the diversity of organismic forms. Here, we present a comparative analysis of one of the best understood developmental gene regulatory networks today: the gap gene network involved in early patterning of insect embryos. We use gene circuit models, which are fitted to quantitative spatio-temporal gene expression data for the four trunk gap genes hunchback (hb), Krüppel (Kr), giant (gt), and knirps (kni)/knirps-like (knl) in the moth midge Clogmia albipunctata, and compare them to equivalent reverse-engineered circuits from our reference species, the vinegar fly Drosophila melanogaster.

View Article and Find Full Text PDF

Unlabelled: ABSTRACT Virulence has been proposed to be an emergent property, which by definition implies that it is not reducible to its components, but this application of a philosophical concept to the host-microbe interaction has not been experimentally tested. The goals of our study were to analyze the correlation of the phenotype with the ability to cause disease and to determine the dynamics of an experimental cryptococcal infection in Galleria mellonella and Acanthamoeba castellanii. By studying the outcome of infection as host death, we showed that the dynamics of virulence in the G.

View Article and Find Full Text PDF

Fungi are major pathogens of plants, other fungi, rotifers, insects, and amphibians, but relatively few cause disease in mammals. Fungi became important human pathogens only in the late 20th century, primarily in hosts with impaired immunity as a consequence of medical interventions or HIV infection. The relatively high resistance of mammals has been attributed to a combination of a complex immune system and endothermy.

View Article and Find Full Text PDF

The segmentation gene hierarchy of Drosophila melanogaster represents one of the best understood of the gene networks that generate pattern during embryogenesis. Some components of this network are ancient, while other parts of the network have evolved within the higher Diptera. To further understand the evolution of this gene network, we are studying the role of gap genes in a representative of a basally diverging dipteran lineage, the moth midge Clogmia albipunctata.

View Article and Find Full Text PDF

In addition to its wide role in metabolism, iron in insects has been implicated in vitellogenesis and the immune response. The NRAMP family comprises a well-conserved family of divalent cation transporters in metazoans. To gain insight on the role of NRAMP in Anopheles albimanus, we cloned a cDNA encoding a 571-residue protein (AnaNRAMP) with the structural features defining the NRAMP family.

View Article and Find Full Text PDF