Background: CBFA2T3-GLIS2 is a fusion gene found in 17% of non-Down syndrome acute megakaryoblastic leukemia (non-DS AMKL, FAB M7) and in 8% of pediatric cytogenetically normal acute myeloid leukemia (CN-AML, in association with several French-American-British (FAB) subtypes). Children with AML harboring this aberration have a poor outcome, regardless of the FAB subtype. This fusion gene drives a peculiar expression pattern and leads to overexpression of some of Hedgehog-related genes.
View Article and Find Full Text PDFWe report a rare case of transient abnormal myelopoiesis (TAM) in a phenotypically normal neonate. The presence of a palpable hepatomegaly prompted in-depth laboratory tests, which revealed the presence of severe hyperleukocytosis, with blast cells present in a peripheral blood smear. Although no signs of Down syndrome were present, we suspected TAM.
View Article and Find Full Text PDFMYCN is an oncogene frequently overexpressed in pediatric solid tumors whereas few evidences suggest his involvement in the pathogenesis of haematologic malignancies. Here we show that MYCN is overexpressed in a relevant proportion (40 to 50%) of adult and pediatric T-cell acute lymphoblastic leukemias (T-ALL). Focusing on pediatric T-ALL, MYCN-expressing samples were found almost exclusively in the TAL1-positive subgroup.
View Article and Find Full Text PDFPurpose: Rhabdomyosarcomas are a major cause of cancer death in children, described with MYCN amplification and, in the alveolar subtype, transcription driven by the PAX3-FOXO1 fusion protein. Our aim was to determine the prevalence of N-Myc protein expression and the potential therapeutic effects of reducing expression in rhabdomyosarcomas, including use of an antigene strategy that inhibits transcription.
Experimental Design: Protein expression was assessed by immunohistochemistry.
Even if the overall survival of children with cancer is significantly improved over these decades, the cure rate of high-risk pediatric solid tumors such as neuroblastoma, Ewing's sarcoma family tumors or rhabdomiosarcoma remain challenging. Autologous hematopoietic stem cell transplantation (HSCT) allows chemotherapy dose intensification beyond marrow tolerance and has become a fundamental tool in the multimodal therapeutical approach of these patients. Anyway this procedure does not allow to these children an event-free survival approaching more than 50% at 5 years.
View Article and Find Full Text PDFIn cardiac cells the effects of n-3 PUFAs on the whole genome are still unknown despite their recognized cardioprotective effects and ability to modulate gene expression. We have evaluated the effects of n-3 PUFAs supplementation on the global gene expression profile in cultured neonatal rat cardiomyocytes, detecting many genes related to lipid transport and metabolism among the upregulated ones. Many of the downregulated genes appeared related to inflammation, cell growth, extracellular and cardiac matrix remodelling, calcium movements and ROS generation.
View Article and Find Full Text PDFThe MLL-AF9 oncogene originates from the translocation t(9;11)(p22;q23), which is mainly associated with monocytic acute myeloid leukaemia (AML-M5; FAB-classification). In AML-M5 THP-1 cells carrying t(9;11) (p22;q23) and expressing MLL-AF9, we previously showed that MLL-AF9 expression is down-regulated during monocyte-macrophage maturation. We have subsequently observed that in a 'rapid-growing' variant of the THP-1 cell line (THP-1-R) MLL-AF9 down-regulation does not occur.
View Article and Find Full Text PDFWe developed an anti-gene peptide nucleic acid (PNA) for selective inhibition of MYCN transcription in neuroblastoma cells, targeted against a unique sequence in the antisense DNA strand of exon 2 of MYCN and linked at its NH(2) terminus to a nuclear localization signal peptide. Fluorescence microscopy showed specific nuclear delivery of the PNA in six human neuroblastoma cell lines: GI-LI-N and IMR-32 (MYCN-amplified/overexpressed); SJ-N-KP and NB-100 (MYCN-unamplified/low-expressed); and GI-CA-N and GI-ME-N (MYCN-unamplified/unexpressed). Antiproliferative effects were observable at 24 hours (GI-LI-N, 60%; IMR-32, 70%) and peaked at 72 hours (GI-LI-N, 80%; IMR-32, 90%; SK-N-KP, 60%; NB-100, 50%); no reduction was recorded for GI-CA-N and GI-ME-N (controls).
View Article and Find Full Text PDFWe developed an antisense peptide nucleic acid (PNA) targeted against a unique sequence in the terminus of the 5'-UTR of N-myc, designed for selective inhibition of NMYC in neuroblastoma cells. Fluorescent microscopy showed carrier-free delivery of the PNA to two human neuro-blastoma cell lines: GI-LI-N (N-myc-amplified) and GI-CA-N (N-myc-unamplified). Only in the former, PNA treatment determined 70% cell-viability reduction (at 48 h).
View Article and Find Full Text PDFThe MLL-AF9 oncogene - one of the most frequent MLL/HRX/ALL-1 rearrangements found in infantile and therapy-related leukaemias - originates from t(9;11)(p22;q23) and is mainly associated with monocytic acute myeloid leukaemia (AML-M5; FAB-classification). Here, we investigated the MLL-AF9 function by means of an antisense phosphorothioate-oligodeoxyribonucleotide (MLL-AF9-PS-ODNas) using the THP-1 AML-M5 cell line carrying t(9;11). Having confirmed that MLL-AF9-PS-ODNas induces strong inhibition of THP-1 cell growth, but only a moderate increase in apoptosis, we found that MLL-AF9-PS-ODNas did not induce morpho-functional terminal differentiation or restore M-CSF-, G-CSF- or GM-CSF-induced differentiation.
View Article and Find Full Text PDF