Focusing optics operating in the soft gamma-ray photon energy range can advance a range of scientific and technological applications that benefit from the large improvements in sensitivity and resolution that true imaging provides. An enabling technology to this end is multilayer coatings. We show that very short period multilayer coatings deposited on super-polished substrates operate efficiently above 0.
View Article and Find Full Text PDFTraditional multilayer reflective optics that have been used in the past for imaging at x-ray photon energies as high as 200 keV are governed by classical wave phenomena. However, their behavior at higher energies is unknown, because of the increasing effect of incoherent scattering and the disagreement between experimental and theoretical optical properties of materials in the hard x-ray and gamma-ray regimes. Here, we demonstrate that multilayer reflective optics can operate efficiently and according to classical wave physics up to photon energies of at least 384 keV.
View Article and Find Full Text PDFWe have developed new, Mg/SiC multilayer coatings with corrosion barriers which can be used to efficiently and simultaneously reflect extreme ultraviolet (EUV) radiation in single or multiple narrow bands centered at wavelengths in the spectral region from 25 to 80 nm. Corrosion mitigation was attempted through the use of Al-Mg or Al thin layers. Three different multilayer design concepts were developed and deposited by magnetron sputtering and the reflectance was measured at near-normal incidence in a broad spectral range.
View Article and Find Full Text PDFThis work discusses the development and calibration of the x-ray reflective and diffractive elements for the Soft X-ray Materials Science (SXR) beamline of the Linac Coherent Light Source (LCLS) free-electron laser (FEL), designed for operation in the 500 to 2000 eV region. The surface topography of three Si mirror substrates and two Si diffraction grating substrates was examined by atomic force microscopy (AFM) and optical profilometry. The figure of the mirror substrates was also verified via surface slope measurements with a long trace profiler.
View Article and Find Full Text PDFWe present the x-ray optical design of the soft x-ray materials science instrument at the Linac Coherent Light Source, consisting of a varied line-spaced grating monochromator and Kirkpatrick-Baez refocusing optics. Results from the commissioning of the monochromator are shown. A resolving power of 3000 was achieved, which is within a factor of two of the design goal.
View Article and Find Full Text PDFThe optical constants of erbium (Er) films were obtained in the 3.25-1580 eV range from transmittance measurements performed at room temperature. Thin films of Er were deposited by evaporation in ultra high vacuum conditions and their transmittance was measured in situ.
View Article and Find Full Text PDFA new type of multilayer coatings with narrowband reflection properties and peaked in the approximately 50- 92 nm spectral range has been developed. Multilayers are based on Yb, Al, and SiO films and they have been prepared by thermal evaporation. Efficient multilayers based on Yb and Al, with an SiO protective layer were prepared, but they developed a dendrite structure, which was attributed to the reactivity between Al and Yb.
View Article and Find Full Text PDFThe reflectance of freshly deposited SiC thin films is measured in situ for what we believe is the first time. SiC was deposited by means of ion-beam sputtering. Reflectance was measured as a function of the incidence angle in the far and extreme ultraviolet wavelengths from 58.
View Article and Find Full Text PDFThis work discusses the experimental determination of the optical constants (refractive index) of DC-magnetron-sputtered boron carbide films in the 30-770 eV photon energy range. Transmittance measurements of three boron carbide films with thicknesses of 54.2, 79.
View Article and Find Full Text PDFBoron films deposited by evaporation with an electron-beam were found to have a relatively high reflectance in the extreme ultraviolet with values similar to those of ion-beam-sputtered (IBS) SiC and IBS B(4)C. The largest reflectance was measured for an 11 nm thick boron film. Some reflectance degradation was observed for boron films stored in a desiccator.
View Article and Find Full Text PDFJ Opt Soc Am A Opt Image Sci Vis
December 2007
The optical constants of electron-beam evaporated boron from 6.8 to 900 eV were calculated through transmittance measurements of boron thin films deposited onto carbon-coated microgrids or LiF substrates in ultrahigh-vacuum conditions. In the low-energy part of the spectrum the measurements were performed in situ on freshly deposited samples, whereas in the high-energy range the samples were exposed to the atmosphere before the measurements.
View Article and Find Full Text PDFJ Opt Soc Am A Opt Image Sci Vis
December 2007
The optical constants of Yb films have been determined in the 23-1700 eV spectral range from transmittance measurements performed in situ on Yb films deposited by evaporation in ultrahigh vacuum conditions. Yb films were deposited over grids coated with a thin carbon film. Transmittance measurements were used to obtain the extinction coefficient of Yb films at each individual photon energy investigated.
View Article and Find Full Text PDFIon-beam sputtering (IBS) and evaporation are the two deposition techniques that have been used to deposit coatings of Al protected with MgF(2) with high reflectance in the vacuum ultraviolet down to 115 nm. Evaporation deposited (ED) Al protected with IBS MgF(2) resulted in a larger (smaller) reflectance below (above) 125 nm than the well-known all-evaporated coatings. A similar comparison is obtained when the Al film is deposited by IBS instead of evaporation.
View Article and Find Full Text PDFJ Opt Soc Am A Opt Image Sci Vis
November 2006
The transmittance of thin films of Sc deposited by evaporation in ultrahigh vacuum conditions has been investigated in the 20-1000 eV spectral range. Transmittance measurements were performed in situ on Sc layers that were deposited over grids coated with a C support film. Transmittance measurements were used to obtain the extinction coefficient of Sc films at each individual photon energy investigated.
View Article and Find Full Text PDF