Layered perovskites, a novel class of two-dimensional (2D) layered materials, exhibit versatile photophysical properties of great interest in photovoltaics and optoelectronics. However, their instability to environmental factors, particularly water, has limited their utility. In this study, we introduce an innovative solution to the problem by leveraging the unique properties of natural beeswax as a protective coating of 2D-fluorinated phenylethylammonium lead iodide perovskite.
View Article and Find Full Text PDFSeveral technologies, including photodetection, imaging, and data communication, could greatly benefit from the availability of fast and controllable conversion of terahertz (THz) light to visible light. Here, we demonstrate that the exceptional properties and dynamics of electronic heat in graphene allow for a THz-to-visible conversion, which is switchable at a sub-nanosecond time scale. We show a tunable on/off ratio of more than 30 for the emitted visible light, achieved through electrical gating using a gate voltage on the order of 1 V.
View Article and Find Full Text PDFInterlayer (IL) excitons, comprising electrons and holes residing in different layers of van der Waals bonded two-dimensional semiconductors, have opened new opportunities for room-temperature excitonic devices. So far, two-dimensional IL excitons have been realized in heterobilayers with type-II band alignment. However, the small oscillator strength of the resulting IL excitons and difficulties with producing heterostructures with definite crystal orientation over large areas have challenged the practical applicability of this design.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2020
Tailoring of the band gap in semiconductors is essential for the development of novel devices. In standard semiconductors, this modulation is generally achieved through highly energetic ion implantation. In two-dimensional (2D) materials, the photophysical properties are strongly sensitive to the surrounding dielectric environment presenting novel opportunities through van der Waals heterostructures encompassing atomically thin high-κ dielectrics.
View Article and Find Full Text PDFGraphene oxide (GO) resistive memories offer the promise of low-cost environmentally sustainable fabrication, high mechanical flexibility and high optical transparency, making them ideally suited to future flexible and transparent electronics applications. However, the dimensional and temporal scalability of GO memories, i.e.
View Article and Find Full Text PDFFew layer graphene systems such as Bernal stacked bilayer and rhombohedral (ABC-) stacked trilayer offer the unique possibility to open an electric field tunable energy gap. To date, this energy gap has been experimentally confirmed in optical spectroscopy. Here we report the first direct observation of the electric field tunable energy gap in electronic transport experiments on doubly gated suspended ABC-trilayer graphene.
View Article and Find Full Text PDFWe present the first systematic study of the stability of the structure and electrical properties of FeCl3 intercalated few-layer graphene to high levels of humidity and high temperature. Complementary experimental techniques such as electrical transport, high resolution transmission electron microscopy and Raman spectroscopy conclusively demonstrate the unforseen stability of this transparent conductor to a relative humidity up to 100% at room temperature for 25 days, to a temperature up to 150°C in atmosphere and to a temperature as high as 620°C in vacuum, that is more than twice higher than the temperature at which the intercalation is conducted. The stability of FeCl3 intercalated few-layer graphene together with its unique values of low square resistance and high optical transparency, makes this material an attractive transparent conductor in future flexible electronic applications.
View Article and Find Full Text PDFWe investigate the optoelectronic properties of novel graphene/FeCl3-intercalated few-layer graphene (FeCl3-FLG, dubbed graphexeter) heterostructures using photovoltage spectroscopy. We observe a prominent photovoltage signal generated at the graphene/FeCl3-FLG and graphene/Au interfaces, whereas the photovoltage at the FeCl3-FLG/Au interface is negligible. The sign of the photovoltage changes upon sweeping the chemical potential of the pristine graphene through the charge neutrality point, and we show that this is due to the photothermoelectric effect.
View Article and Find Full Text PDF