Despite growing interest in cognitive interventions from academia and industry, it remains unclear if working memory (WM) training, one of the most popular cognitive interventions, produces transfer effects. Transfer effects are training-induced gains in performance in untrained cognitive tasks, while practice effects are improvements in trained task. The goal of this study was to evaluate potential transfer effects by comprehensive cognitive testing and neuroimaging.
View Article and Find Full Text PDFRecent functional magnetic resonance imaging (fMRI) studies revealed lower neural activation during processing of an n-back task following working memory training, indicating a training-related increase in neural efficiency. In the present study, we asked if the training induced regional neural activation is accompanied by changes in glucose consumption. An active control and an experimental group of healthy middle-aged volunteers conducted 32 sessions of visual and verbal n-back trainings over 8 weeks.
View Article and Find Full Text PDFCerebral palsy (CP) is an umbrella term encompassing motor and often additional disabilities, resulting from insult to the developing brain and remaining throughout life. Imaging-detected alterations in white matter microstructure affect not only motor but also sensorimotor pathways. In this context, piano training is believed to promote sensorimotor rehabilitation for the multiplicity of skills and neuronal processes it involves and integrates.
View Article and Find Full Text PDFPurpose: Positron emission tomography (PET) with [F]fluorodeoxyglucose (FDG) is a powerful method for mapping cerebral glucose metabolism as a proxy of neural activity, assuming a steady-state during the recording interval. We asked if a clinical FDG-PET imaging protocol might also capture changes in neural activity associated with performance of a working memory (WM) task.
Methods: To test this concept, we examined hybrid PET/MR data for FDG-PET and simultaneous functional magnetic resonance imaging (fMRI) in a sample of healthy volunteers.
Working memory training (WMT) has been shown to have effects on cognitive performance, the precise effects and the underlying neurobiological mechanisms are, however, still a matter of debate. In particular, the impact of WMT on gray matter morphology is still rather unclear. In the present study, 59 healthy middle-aged participants (age range 50-65 years) were pseudo-randomly single-blinded allocated to an 8-week adaptive WMT or an 8-week nonadaptive intervention.
View Article and Find Full Text PDFAging is known to affect nociceptive processing, e.g., the ability to inhibit pain.
View Article and Find Full Text PDFNeural correlates of working memory (WM) training remain a matter of debate, especially in older adults. We used functional magnetic resonance imaging (fMRI) together with an n-back task to measure brain plasticity in healthy middle-aged adults following an 8-week adaptive online verbal WM training. Participants performed 32 sessions of this training on their personal computers.
View Article and Find Full Text PDFVerbal Working memory (vWM) capacity measures the ability to maintain and manipulate verbal information for a short period of time. The specific neural correlates of this construct are still a matter of debate. The aim of this study was to conduct a coordinate-based meta-analysis of 42 fMRI studies on visual vWM in healthy subjects ( = 795, males = 459, females = 325, unknown = 11; age range: 18-75).
View Article and Find Full Text PDF