TadA-derived cytosine base editors (TadCBEs) enable programmable C•G-to-T•A editing while retaining the small size, high on-target activity, and low off-target activity of TadA deaminases. Existing TadCBEs, however, exhibit residual A•T-to-G•C editing at certain positions and lower editing efficiencies at some sequence contexts and with non-SpCas9 targeting domains. To address these limitations, we use phage-assisted evolution to evolve CBE6s from a TadA-mediated dual cytosine and adenine base editor, discovering mutations at N46 and Y73 in TadA that prevent A•T-to-G•C editing and improve C•G-to-T•A editing with expanded sequence-context compatibility, respectively.
View Article and Find Full Text PDFPrime editing enables a wide variety of precise genome edits in living cells. Here we use protein evolution and engineering to generate prime editors with reduced size and improved efficiency. Using phage-assisted evolution, we improved editing efficiencies of compact reverse transcriptases by up to 22-fold and generated prime editors that are 516-810 base pairs smaller than the current-generation editor PEmax.
View Article and Find Full Text PDFAn aliphatic halogenase requires four substrates: 2-oxoglutarate (2OG), halide (Cl or Br), the halogenation target ("prime substrate"), and dioxygen. In well-studied cases, the three nongaseous substrates must bind to activate the enzyme's Fe(II) cofactor for efficient capture of O. Halide, 2OG, and (lastly) O all coordinate directly to the cofactor to initiate its conversion to a -halo-oxo-iron(IV) (haloferryl) complex, which abstracts hydrogen (H) from the non-coordinating prime substrate to enable radicaloid carbon-halogen coupling.
View Article and Find Full Text PDFAn aliphatic halogenase requires four substrates: 2-oxoglutarate (2OG), halide (Cl or Br ), the halogenation target ("prime substrate"), and dioxygen. In well-studied cases, the three non-gaseous substrates must bind to activate the enzyme's Fe(II) cofactor for efficient capture of O . Halide, 2OG, and (lastly) O all coordinate directly to the cofactor to initiate its conversion to a -halo-oxo-iron(IV) (haloferryl) complex, which abstracts hydrogen (H•) from the non-coordinating prime substrate to enable radicaloid carbon-halogen coupling.
View Article and Find Full Text PDFBiocatalytic C-H activation has the potential to merge enzymatic and synthetic strategies for bond formation. Fe/αKG-dependent halogenases are particularly distinguished for their ability both to control selective C-H activation as well as to direct group transfer of a bound anion along a reaction axis separate from oxygen rebound, enabling the development of new transformations. In this context, we elucidate the basis for the selectivity of enzymes that perform selective halogenation to yield 4-Cl-lysine (BesD), 5-Cl-lysine (HalB), and 4-Cl-ornithine (HalD), allowing us to probe how site-selectivity and chain length selectivity are achieved.
View Article and Find Full Text PDFCytosine base editors (CBEs) are larger and can suffer from higher off-target activity or lower on-target editing efficiency than current adenine base editors (ABEs). To develop a CBE that retains the small size, low off-target activity and high on-target activity of current ABEs, we evolved the highly active deoxyadenosine deaminase TadA-8e to perform cytidine deamination using phage-assisted continuous evolution. Evolved TadA cytidine deaminases contain mutations at DNA-binding residues that alter enzyme selectivity to strongly favor deoxycytidine over deoxyadenosine deamination.
View Article and Find Full Text PDFThe enzyme BesC from the -thynyl-l-erine biosynthetic pathway in fragments 4-chloro-l-lysine (produced from l-Lysine by BesD) to ammonia, formaldehyde, and 4-chloro-l-allylglycine and can analogously fragment l-Lys itself. BesC belongs to the emerging family of O-activating non-heme-diiron enzymes with the "heme-oxygenase-like" protein fold (HDOs). Here, we show that the binding of l-Lys or an analogue triggers capture of O by the protein's diiron(II) cofactor to form a blue μ-peroxodiiron(III) intermediate analogous to those previously characterized in two other HDOs, the olefin-installing fatty acid decarboxylase, UndA, and the guanidino--oxygenase domain of SznF.
View Article and Find Full Text PDFFe/α-ketoglutarate (Fe/αKG)-dependent enzymes offer a promising biocatalytic platform for halogenation chemistry owing to their ability to functionalize unactivated C-H bonds. However, relatively few radical halogenases have been identified to date, limiting their synthetic utility. Here, we report a strategy to expand the palette of enzymatic halogenation by engineering a reaction pathway rather than substrate selectivity.
View Article and Find Full Text PDFThe integration of synthetic and biological catalysis enables new approaches to the synthesis of small molecules by combining the high selectivity of enzymes with the reaction diversity offered by synthetic chemistry. While organohalogens are valued for their bioactivity and utility as synthetic building blocks, only a handful of enzymes that carry out the regioselective halogenation of unactivated [Formula: see text] bonds have previously been identified. In this context, we report the structural characterization of BesD, a recently discovered radical halogenase from the Fe/α-ketogluturate-dependent family that chlorinates the free amino acid lysine.
View Article and Find Full Text PDF