Publications by authors named "Monica E Buchanan"

The gastrointestinal (GI) epithelium is the fastest renewing adult tissue and is maintained by tissue-specific stem cells. Treatment-induced GI side effects are a major dose-limiting factor for chemotherapy and abdominal radiotherapy and can decrease the quality of life in cancer patients and survivors. p53 is a key regulator of the DNA damage response, and its activation results in stimulus- and cell type-specific outcomes via distinct effectors.

View Article and Find Full Text PDF

Colorectal tumorigenesis is driven by genetic alterations in the adenomatous polyposis coli (APC) tumor suppressor pathway and effectively inhibited by nonsteroidal antiinflammatory drugs (NSAIDs). However, how NSAIDs prevent colorectal tumorigenesis has remained obscure. We found that the extrinsic apoptotic pathway and the BH3 interacting-domain death agonist (BID) are activated in adenomas from NSAID-treated patients.

View Article and Find Full Text PDF

Intestinal epithelial cell (IEC) apoptosis contributes to the development of ulcerative colitis (UC), an inflammatory bowel disease (IBD) that affects the colon and rectum. Therapies that target the inflammatory cytokine TNF have been found to inhibit IEC apoptosis in patients with IBD, although the mechanism of IEC apoptosis remains unclear. We therefore investigated the role of p53-upregulated modulator of apoptosis (PUMA), a p53 target and proapoptotic BH3-only protein, in colitis and IEC apoptosis, using patient samples and mouse models of UC.

View Article and Find Full Text PDF

Nonspecific cognitive impairments are one of the many manifestations of neurofibromatosis type 1 (NF1). A learning phenotype is also present in Drosophila melanogaster that lack a functional neurofibromin gene (nf1). Multiple studies have indicated that Nf1-dependent learning in Drosophila involves the cAMP pathway, including the demonstration of a genetic interaction between Nf1 and the rutabaga-encoded adenylyl cyclase (Rut-AC).

View Article and Find Full Text PDF

Assigning a gene's function to specific pathways used for classical conditioning, such as conditioned stimulus (CS) and unconditioned stimulus (US) pathway, is important for understanding the fundamental molecular and cellular mechanisms underlying memory formation. Prior studies have shown that the GABA receptor RDL inhibits aversive olfactory learning via its role in the Drosophila mushroom bodies (MBs). Here, we describe the results of further behavioral tests to further define the pathway involvement of RDL.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessiona2e732t0ggncf4dg7q7b6t68c8sai6u3): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once