There is great interest in the development of prosthetic limbs capable of complex activities that are wirelessly connected to the patient's neural system. Although some progress has been achieved in this area, one of the main problems encountered is the selective acquisition of nerve impulses and the closing of the automation loop through the selective stimulation of the sensitive branches of the patient. Large-scale research and development have achieved so-called "cuff electrodes"; however, they present a big disadvantage: they are not selective.
View Article and Find Full Text PDFMyoelectric exoprostheses serve to aid in the everyday activities of patients with forearm or hand amputations. While electrical signals are known key factors controlling exoprosthesis, little is known about how we can improve their transmission strength from the forearm muscles as to obtain better sEMG. The purpose of this study is to evaluate the role of the forearm fascial layer in transmitting myoelectrical current.
View Article and Find Full Text PDFIn this article, we present our research achievements regarding the development of a remote sensing system for motor pulse acquisition, as a first step towards a complete neuroprosthetic arm. We present the fabrication process of an implantable electrode for nerve impulse acquisition, together with an innovative wirelessly controlled system. In our study, these were combined into an implantable device for attachment to peripheral nerves.
View Article and Find Full Text PDF