The design of new materials with antimicrobial properties has emerged in response to the need for preventing and controlling the growth of pathogenic microorganisms without the use of antibiotics. In this study, partially reduced graphene oxide decorated with silver nanoparticles (GO-AgNPs) was incorporated as a reinforcing filler with antibacterial properties to poly(vinyl alcohol) (PVA) for preparation of poly(vinyl alcohol)/graphene oxide-silver nanoparticles nanocomposites (PVA/GO-AgNPs). AgNPs, spherical in shape and with an average size of 3.
View Article and Find Full Text PDFDrug resistance of pathogenic microorganisms has become a global public health problem, which has prompted the development of new materials with antimicrobial properties. In this context, antimicrobial nanohybrids are an alternative due to their synergistic properties. In this study, we used an environmentally friendly one-step approach to synthesize graphene oxide (GO) decorated with silver nanoparticles (GO-AgNPs).
View Article and Find Full Text PDFMost hospitalized patients are carriers of biomedical devices. Infections associated with these devices cause great morbidity and mortality, especially in patients in intensive care units. Numerous strategies have been designed to prevent biofilm development on biodevices.
View Article and Find Full Text PDFThe incorporation of polyhedral oligomeric silsesquioxanes (POSS) molecules as nanoparticles into polymers can provide improved physico-chemical properties. The enhancement depends on the extent of dispersion of the nanofiller, which is determined by the compatibility with the polymer that is by the POSS type, and the processing method. In this study, poly(ε-caprolactone)/POSS derivatives nanocomposites (PCL/POSS) were obtained via solution-casting and melt compounding.
View Article and Find Full Text PDFThe enhanced properties of polymer nanocomposites as compared with pure polymers are only achieved in the presence of well-dispersed nanofillers and strong interfacial adhesion. In this study, we report the preparation of nanocomposite films based on poly(vinyl alcohol) (PVA) filled with well dispersed graphene sheets (GS) by in situ reduction of graphene oxide (GO) dispersed in PVA solution using ascorbic acid (L-AA) as environmentally friendly reductant. The combined effect of GS content and glycerol as plasticizer on the structure, thermal, mechanical, water absorption, and water barrier properties of PVA/GS nanocomposite films is studied for the first time.
View Article and Find Full Text PDFUnplasticized and glycerol plasticized chitosan/graphene (CS/GS) nanocomposites were synthesized via in situ chemical reduction of graphene oxide sheets (GO) with l-ascorbic acid (L-AA) as reductant by solution casting. The reduction of GO with L-AA was investigated to establish the optimal amount of reductant required to produce chemically reduced graphene sheets (GS). The combine effect of both nanofiller and glycerol on the structure, thermal, mechanical, and electrical properties of CS/GS nanocomposite films was evaluated.
View Article and Find Full Text PDF