Diabetes mellitus (DM) is associated with increased production of reactive oxygen and nitrogen species; consequently, an increase in lipid peroxidation and a decrease in antioxidants resulting in mitochondrial dysfunction. Using a rat model of DM induced by streptozotocin, we show the opposite: an increase in NO levels, S-nitrosylation, aconitase activity, and total glutathione and a decrease in lipid peroxidation at early stages of diabetes. These data imply that the decrease in lipid peroxidation is a vital early response to hyperglycemia to prevent escalation of ROS generation in mitochondria.
View Article and Find Full Text PDFDuring the mezcal fermentation process, yeasts are affected by several stresses that can affect their fermentation capability. These stresses, such as thermal shock, ethanol, osmotic and growth inhibitors are common during fermentation. Cells have improved metabolic systems and they express stress response genes in order to decrease the damage caused during the stress, but to the best of our knowledge, there are no published works exploring the effect of oxidants and prooxidants, such as H2O2 and menadione, during growth.
View Article and Find Full Text PDFDiabetes mellitus (DM) is a significant risk factor for the development of cardiovascular complications. This study was undertaken to investigate the effect of chronic administration of ethanolic extract of Eryngium carlinae on glucose, creatinine, uric acid, total cholesterol, and triglycerides levels in serum of streptozotocin- (STZ-) induced diabetic rats. Triglycerides, total cholesterol, and uric acid levels increased in serum from diabetic rats.
View Article and Find Full Text PDFTrans-resveratrol is a nutraceutical with known antioxidant, anti-inflammatory, cardioprotective, and anti-apoptotic properties. The aim of this study was to evaluate the effects of resveratrol on heart mitochondria. Resveratrol significantly decreased Fe(2+) + ascorbate oxidant system-induced lipid peroxide levels, preserved physiological levels of glutathione, and increased nitric oxide (NO) levels in mitochondria.
View Article and Find Full Text PDFJ Bioenerg Biomembr
April 2011
The mitochondrial electron transport chain (ETC) contains thiol groups (-SH) which are reversibly oxidized to modulate ETC function during H(2)O(2) overproduction. Since deleterious effects of H(2)O(2) are not limited to -SH oxidation, due to the formation of other H(2)O(2)-derived species, some processes like lipoperoxidation could enhance the effects of H(2)O(2) over ETC enzymes, disrupt their modulation by -SH oxidation and increase superoxide production. To verify this hypothesis, we tested the effects of H(2)O(2) on ETC activities, superoxide production and iron mobilization in mitochondria from lipoperoxidation-resistant native yeast and lipoperoxidation-sensitized yeast.
View Article and Find Full Text PDFJ Bioenerg Biomembr
February 2009
Lipoperoxidative damage to the respiratory chain proteins may account for disruption in mitochondrial electron transport chain (ETC) function and could lead to an augment in the production of reactive oxygen species (ROS). To test this hypothesis, we investigated the effects of lipoperoxidation on ETC function and cytochromes spectra of Saccharomyces cerevisiae mitochondria. We compared the effects of Fe(2+) treatment on mitochondria isolated from yeast with native (lipoperoxidation-resistant) and modified (lipoperoxidation-sensitive) fatty acid composition.
View Article and Find Full Text PDFFree Radic Res
November 2007
The deleterious effects of H202 on the electron transport chain of yeast mitochondria and on mitochondrial lipid peroxidation were evaluated. Exposure to H2O2 resulted in inhibition of the oxygen consumption in the uncoupled and phosphorylating states to 69% and 65%, respectively. The effect of H2O2 on the respiratory rate was associated with an inhibition of succinate-ubiquinone and succinate-DCIP oxidoreductase activities.
View Article and Find Full Text PDFNitric oxide (NO) is an important reactive molecule in many organisms. A mitochondrial nitric oxide synthase has been described; however, the role of NO in this organelle is not yet fully clear. We tested the effect of intramitochondrial NO on various functions from spontaneously hypertensive rats (SHR) and their normotensive genetic control, Wistar-Kyoto (WKY) rats.
View Article and Find Full Text PDF