The abnormal GGGGCC hexanucleotide repeat expansions (HREs) in C9orf72 cause the fatal neurodegenerative diseases including amyotrophic lateral sclerosis and frontotemporal dementia. The transcribed RNA HREs, short for r(G4C2)n, can form toxic RNA foci which sequestrate RNA binding proteins and impair RNA processing, ultimately leading to neurodegeneration. Here, we determined the crystal structure of r(G4C2)2, which folds into a parallel tetrameric G-quadruplex composed of two four-layer dimeric G-quadruplex via 5'-to-5' stacking in coordination with a K+ ion.
View Article and Find Full Text PDFInt J Biol Macromol
March 2024
Guanine (G)-rich nucleic acid sequences can form diverse G-quadruplex structures located in functionally significant genome regions, exerting regulatory control over essential biological processes, including DNA replication in vivo. During the initiation of DNA replication, Cdc6 is recruited by the origin recognition complex (ORC) to target specific chromosomal DNA sequences. This study reveals that human Cdc6 interacts with G-quadruplex structure through a distinct region within the N-terminal intrinsically disordered region (IDR), encompassing residues 7-20.
View Article and Find Full Text PDFThe G-quadruplex (G4) forming GGGGCC (G4C2) expanded hexanucleotide repeat (EHR) is the predominant genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Developing selective G4-binding ligands is challenging due to the conformational polymorphism and similarity of G4 structures. We identified three first-in-class marine natural products, chrexanthomycin A (), chrexanthomycin B (), and chrexanthomycin C (), with remarkable bioactivities.
View Article and Find Full Text PDF