Publications by authors named "Monica Chander"

A phage T5 N25 promoter variant, DG203, undergoes the escape transition at the +16 to +19 positions after transcription initiation. By specifically examining the abortive activity of the initial transcribing complex at position +19 (ITC19), we observe the production of both GreB-sensitive and GreB-resistant VLAT19. This suggests that ITC19, which is perched on the brink of escape, is highly unstable and can achieve stabilization through either backtracking or forward translocation.

View Article and Find Full Text PDF

The redox-regulated transcription factor SoxR is conserved in diverse bacteria, but emerging studies suggest that this protein plays distinct physiological roles in different bacteria. SoxR regulates a global oxidative stress response (involving > 100 genes) against exogenous redox-cycling drugs in Escherichia coli and related enterics. In the antibiotic producers Streptomyces coelicolor and Pseudomonas aeruginosa, however, SoxR regulates a smaller number of genes that encode membrane transporters and proteins with homology to antibiotic-tailoring enzymes.

View Article and Find Full Text PDF

In enterics, the transcription factor SoxR triggers a global stress response by sensing a broad spectrum of redox-cycling compounds. In the non-enteric bacteria Pseudomonas aeruginosa and Streptomyces coelicolor, SoxR is activated by endogenous redox-active small molecules and only regulates a small set of genes. We investigated if the more general response in enterics is reflected in the ability of SoxR to sense a wider range of redox-cycling compounds.

View Article and Find Full Text PDF

The [2Fe-2S]-containing transcription factor SoxR is conserved in diverse bacteria. SoxR is traditionally known as the regulator of a global oxidative stress response in Escherichia coli, but recent studies suggest that this function may be restricted to enteric bacteria. In the vast majority of nonenterics, SoxR is predicted to mediate a response to endogenously produced redox-active metabolites.

View Article and Find Full Text PDF

The Esigma70-dependent N25 promoter is rate-limited at promoter escape. Here, RNA polymerase repeatedly initiates and aborts transcription, giving rise to a ladder of short RNAs 2-11 nucleotides long. Certain mutations in the initial transcribed sequence (ITS) of N25 lengthen the abortive initiation program, resulting in the release of very long abortive transcripts (VLATs) 16-19 nucleotides long.

View Article and Find Full Text PDF

SoxR protein, a member of the MerR family of transcriptional activators, mediates a global oxidative stress response in Escherichia coli. Upon oxidation or nitrosylation of its [2Fe-2S] centers SoxR activates its target gene, soxS, by mediating a structural transition in the promoter DNA that stimulates initiation by RNA polymerase. We explored the molecular basis of this signal transduction by analyzing mutant SoxR proteins defective in responding to oxidative stress signals in vivo.

View Article and Find Full Text PDF

The soxRS regulon protects Escherichia coli from superoxide and nitric oxide stress. SoxR protein, a transcription factor that senses oxidative stress via its [2Fe-2S] centers, transduces the signal to the soxS promoter to stimulate RNA polymerase. Here we describe 29 mutant alleles of soxR that cause defects in the activation of soxS transcription in response to paraquat, a superoxide stress agent.

View Article and Find Full Text PDF

Bacillus subtilis cells with mutations in the spoVA operon do not complete sporulation. However, a spoVA strain with mutations that remove all three of the spore's functional nutrient germinant receptors (termed the ger3 mutations) or the cortex lytic enzyme SleB (but not CwlJ) did complete sporulation. ger3 spoVA and sleB spoVA spores lack dipicolinic acid (DPA) and have lower core wet densities and levels of wet heat resistance than wild-type or ger3 spores.

View Article and Find Full Text PDF