Polychlorinated biphenyls (PCBs) are ubiquitous persistent organic pollutants that can be co-metabolically biotransformed by biphenyl-utilizing bacteria. In this study, terminal-restriction fragment length polymorphism (T-RFLP) was applied to the substrate specificity-determining region of the 2,3-biphenyl dioxygenase encoding genes of a microbial community found in a PCB-polluted soil. Notably, both the total biphenyl/PCB-utilizing community and its members actively expressing the 2,3-biphenyl dioxygenase gene were analyzed.
View Article and Find Full Text PDFThis study shows that the oxyanion tellurite TeO3(2-) can be used as a tool to detect and quantify the release in soil microcosms of Pseudomonas pseudoalcaligenes KF707, a strain spontaneously resistant to tellurite with a minimal inhibitory concentration (MIC) of 150 microg ml(-1). KF707 cells which carry the genes for degradation of a wide range of polychlorinated biphenyl congeners (PCBs) were used for inoculation of laboratory microcosms prepared with two different PCB-contaminated soils (Ci/s and Di/s) in the presence or absence of biphenyl as carbon source. In all microcosms supplemented with biphenyl, significant survival of strain KF707 was noted over a time period of 35 days; conversely, in microcosms containing Ci/s soil without biphenyl addition a rapid decrease in KF707 inoculated cells was observed.
View Article and Find Full Text PDFThe respiratory chain of Pseudomonas pseudoalcaligenes KF707 in membranes isolated from cells grown in the presence or absence of the toxic oxyanion tellurite (TeO3(2-)) was examined. Aerobic growth in the absence of tellurite shows an NADH-dependent respiration which is 80% catalysed by the cytochrome (cyt) bc1-containing pathway leading to two terminal membrane-bound cyt c oxidases inhibited by different concentrations of KCN (IC50 0.2 and 1 microM).
View Article and Find Full Text PDF