Publications by authors named "Monica Campas"

Cell-based biosensors (CBBs) for the detection of marine neurotoxins such as ciguatoxins (CTXs) are of high interest due to the composite toxicological response they can provide and the low limits of quantification (LOQs) they can achieve with the use of sensitive neural cells. However, the development and validation of CBBs are challenging due to the use of living material and the need for appropriate signal transduction strategies. In this work, Neuro-2a cells have been immobilized on thin-film gold electrodes, and their viability after exposure to CTX1B has been evaluated with light optical microscopy as well as cyclic voltammetry (CV) and differential pulse voltammetry (DPV) using methylene blue (MB) as a redox indicator.

View Article and Find Full Text PDF
Article Synopsis
  • Pufferfish, known for being highly toxic due to neurotoxins like tetrodotoxins and paralytic shellfish toxins, poses a serious risk to human health and has caused many poisoning incidents.
  • A study analyzed tissue extracts from two pufferfish species collected from the Spanish Mediterranean, revealing no toxicity in Sphoeroides pachygaster but significant toxicity in the liver of Lagocephalus lagocephalus specimens.
  • High-performance liquid chromatography analysis confirmed the presence of paralytic shellfish toxins, particularly saxitoxin and decarbamoylsaxitoxin, in L. lagocephalus, highlighting a food safety concern due to the potential risks associated with consuming this toxic fish in the region. *
View Article and Find Full Text PDF
Article Synopsis
  • Tetrodotoxin (TTX) is a dangerous marine neurotoxin linked to various poisoning cases and fatalities, with over 30 known analogues, but their toxic effects are not fully understood.
  • This study focused on determining the toxicity equivalency factors (TEFs) of five TTX analogues by examining how they affect voltage-gated sodium channels in Neuro-2a cells using an automated patch clamp method.
  • Results showed that all TTX analogues were less toxic than TTX, and the derived TEFs can effectively convert LC-MS/MS data from pufferfish samples into relevant toxicological insights, emphasizing the potential of this method for food safety and health protection.
View Article and Find Full Text PDF

Tetrodotoxin (TTX) is a marine toxin responsible for many intoxications around the world. Its presence in some pufferfish species and, as recently reported, in shellfish, poses a serious health concern. Although TTX is not routinely monitored, there is a need for fast, sensitive, reliable, and simple methods for its detection and quantification.

View Article and Find Full Text PDF

Tetrodotoxin (TTX) is a potent marine neurotoxin involved in poisoning cases, especially through the consumption of puffer fish. Knowledge of the toxicity equivalency factors (TEFs) of TTX analogues is crucial in monitoring programs to estimate the toxicity of samples analyzed with instrumental analysis methods. In this work, TTX analogues were isolated from the liver of a individual caught on South Crete coasts.

View Article and Find Full Text PDF

The emergence of marine toxins such as ciguatoxins (CTXs) and tetrodotoxins (TTXs) in non-endemic regions may pose a serious food safety threat and public health concern if proper control measures are not applied. This article provides an overview of the main biorecognition molecules used for the detection of CTXs and TTXs and the different assay configurations and transduction strategies explored in the development of biosensors and other biotechnological tools for these marine toxins. The advantages and limitations of the systems based on cells, receptors, antibodies, and aptamers are described, and new challenges in marine toxin detection are identified.

View Article and Find Full Text PDF

Dinoflagellates of the genera Gambierdiscus and Fukuyoa are able to produce potent neurotoxins like ciguatoxins (CTXs), which, after biooxidation in fish, are responsible for ciguatera intoxication. An isolate of G. australes from the Canary Islands, that revealed the presence of CTX-like compounds by immunosensing tools, was studied by immunocytochemistry to localize intracellular CTX-like compounds, using 8H4 monoclonal antibody that specifically recognizes the right wing of CTX1B and CTX3C analogues.

View Article and Find Full Text PDF

Marine toxins are potent toxic compounds that may reach humans and poison them. Therefore, their detection in seafood is crucial to prevent intoxication cases. Colorimetric cell-based assays (CBAs) have been developed to analyse marine neurotoxins, such as ciguatoxins (CTXs) and tetrodotoxins (TTXs), and are based on the toxicological effect of these toxins on the cells.

View Article and Find Full Text PDF

Ciguatoxins (CTXs) are marine toxins produced by microalgae of the genera Gambierdiscus and Fukuyoa, which are transferred through the food webs, reaching humans and causing a poisoning known as ciguatera. The cell-based assay (CBA) is commonly used for their detection because of its high sensitivity and the provided toxicological information. However, matrix effects may interfere in the CBA.

View Article and Find Full Text PDF

Ciguatera Poisoning (CP) is caused by consumption of fish or invertebrates contaminated with ciguatoxins (CTXs). Presently CP is a public concern in some temperate regions, such as Macaronesia (North-Eastern Atlantic Ocean). Toxicity analysis was performed to characterize the fish species that can accumulate CTXs and improve understanding of the ciguatera risk in this area.

View Article and Find Full Text PDF

Veratridine (VTD) is a plant neurotoxin that acts by blocking the voltage-gated sodium channels (VGSC) of cell membranes. Symptoms of VTD intoxication include intense nausea, hypotension, arrhythmia, and loss of consciousness. The treatment for the intoxication is mainly focused on treating the symptoms, meaning there is no specific antidote against VTD.

View Article and Find Full Text PDF

Tetrodotoxin (TTX) is a crystalline, weakly basic, colorless organic substance and is one of the most potent marine toxins known. Although TTX was first isolated from pufferfish, it has been found in numerous other marine organisms and a few terrestrial species. Moreover, tetrodotoxication is still an important health problem today, as TTX has no known antidote.

View Article and Find Full Text PDF

Ciguatoxins (CTXs) are marine neurotoxins produced by microalgae of the genera Gambierdiscus and Fukuyoa. CTXs may reach humans through food webs and cause ciguatera fish poisoning (CFP). An immunosensor for the detection of Pacific CTXs in fish was developed using multiwalled carbon nanotube (MWCNT)-modified carbon electrodes and a smartphone-controlled potentiostat.

View Article and Find Full Text PDF

The proliferation of harmful microalgae endangers aquatic ecosystems and can have serious economic implications on a global level. Harmful microalgae and their associated toxins also pose a threat to human health since they can cause seafood-borne diseases such as ciguatera. Implementation of DNA-based molecular methods together with appropriate detection strategies in monitoring programs can support the efforts for effective prevention of potential outbreaks.

View Article and Find Full Text PDF

The marine toxin tetrodotoxin (TTX) poses a great risk to public health safety due to its severe paralytic effects after ingestion. Seafood poisoning caused by the consumption of contaminated marine species like pufferfish due to its expansion to nonendemic areas has increased the need for fast and reliable detection of the toxin to effectively implement prevention strategies. Liquid chromatography-mass spectrometry is considered the most accurate method, although competitive immunoassays have also been reported.

View Article and Find Full Text PDF

Several genera of marine dinoflagellates are known to produce bioactive compounds that affect human health. Among them, Gambierdiscus and Fukuyoa stand out for their ability to produce several toxins, including the potent neurotoxic ciguatoxins (CTXs), which accumulate through the food web. Once fishes contaminated with CTXs are ingested by humans, it can result in an intoxication named ciguatera.

View Article and Find Full Text PDF

Cyclodextrins, cyclic oligomers that form a conical structure with an internal cavity, are proposed as new and sustainable materials for passive sampling of lipophilic marine toxins. Two applicability scenarios have been tested. First, disks containing β-cyclodextrin-hexamethylene diisocyanate (β-CD-HDI) and β-cyclodextrin-epichlorohydrin (β-CD-EPI) polymers were immersed in Prorocentrum lima cultures for different days (2, 12 and 40).

View Article and Find Full Text PDF

The easy and rapid spread of bacterial contamination and the risk it poses to human health makes evident the need for analytical methods alternative to conventional time-consuming laboratory-based techniques for bacterial detection. To tackle this demand, biosensors based on isothermal DNA amplification methods have emerged, which avoid the need for thermal cycling, thus facilitating their integration into small and low-cost devices for in situ monitoring. This review focuses on the breakthroughs made on biosensors based on isothermal amplification methods for the detection of bacteria in the field of food safety and environmental monitoring.

View Article and Find Full Text PDF

Gambierdiscus and Fukuyoa are genera of toxic dinoflagellates which were mainly considered as endemic to marine intertropical areas, and that are well known as producers of ciguatoxins (CTXs) and maitotoxins (MTXs). Ciguatera poisoning (CP) is a human poisoning occurring after the consumption of fish or more rarely, shellfish containing CTXs. The presence of these microalgae in a coastal area is an indication of potential risk of CP.

View Article and Find Full Text PDF

Ciguatera Poisoning (CP) is a human food-borne poisoning that has been known since ancient times to be found mainly in tropical and subtropical areas, which occurs when fish or very rarely invertebrates contaminated with ciguatoxins (CTXs) are consumed. The genus of marine benthic dinoflagellates produces CTX precursors. The presence of species in a region is one indicator of CP risk.

View Article and Find Full Text PDF

The species affects shellfish, contributing significantly to high economic losses during production. To counteract the threat related to mortality, there is a need for the development of novel point-of-care testing (POCT) that can be implemented in aquaculture production to prevent disease outbreaks. In this study, a simple, rapid and specific colorimetric loop-mediated isothermal amplification (LAMP) assay has been developed for the detection of (OsHV-1) and its variants infecting ().

View Article and Find Full Text PDF

Harmful algal blooms (HABs) represent a growing threat to aquatic ecosystems and humans. Effective HAB management and mitigation efforts strongly rely on the availability of timely and in-situ tools for the detection of microalgae. In this sense, nucleic acid-based (molecular) methods are being considered for the unequivocal identification of microalgae as an attractive alternative to the currently used time-consuming and laboratory-based light microscopy techniques.

View Article and Find Full Text PDF

Involving and engaging stakeholders is crucial for studying and managing the complex interactions between marine ecosystems and human health and wellbeing. The Oceans and Human Health Chair was founded in the town of Roses (Catalonia, Spain, NW Mediterranean) in 2018, the fruit of a regional partnership between various stakeholders, and for the purpose of leading the way to better health and wellbeing through ocean research and conservation. The Chair is located in an area of the Mediterranean with a notable fishing, tourist, and seafaring tradition and is close to a marine reserve, providing the opportunity to observe diverse environmental conditions and coastal and maritime activities.

View Article and Find Full Text PDF

Tetrodotoxin (TTX) is a potent neurotoxin responsible for many food poisoning incidents and some fatalities. Although mainly associated with the consumption of pufferfish, in recent years, TTX has been found in shellfish, particularly in Europe. In this work, a magnetic bead (MB)-based colorimetric immunoassay was applied to the detection of TTX in Pacific oysters (Crassostrea gigas), razor clams (Solen marginatus) and mussels (Mytilus galloprovincialis).

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionr9qqlp2ubgl84otqlt5m45bf0a4fic0c): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once