Identifying conductive metal-organic frameworks (MOFs) with a coupled ion-electron behavior from a vast array of existing MOFs offers a cost-effective strategy to tap into their potential in energy storage applications. This study employs classification and regression machine learning (ML) to rapidly screen the CoREMOF database and experimental methodologies to validate ML predictions. This process revealed the structure-property relationships contributing to MOFs' bulk ion-electron conductivity.
View Article and Find Full Text PDFSummative lab assessments probe student mastery over concepts, but conventional ones often result in decreased student engagement and confidence. If conventional summative lab assessments are replaced by accessible gamified evaluations, such as online escape rooms, this leads to improved student engagement and confidence. In this work, we adapted two sustainability themed online escape room activities to increase student engagement and confidence in data analyses in Integrated Chemistry I (CHEM 381) over three semesters at CSU, Chico.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2021
An intriguing new class of two-dimensional (2D) materials based on metal-organic frameworks (MOFs) has recently been developed that displays electrical conductivity, a rarity among these nanoporous materials. The emergence of conducting MOFs raises questions about their fundamental electronic properties, but few studies exist in this regard. Here, we present an integrated theory and experimental investigation to probe the effects of metal substitution on the charge transport properties of M-HITP, where M = Ni or Pt and HITP = 2,3,6,7,10,11-hexaiminotriphenylene.
View Article and Find Full Text PDFWe demonstrate that thin films of metal-organic framework (MOF)-like materials, containing two perylenediimides (PDICl4, PDIOPh2) and a squaraine dye (S1), can be fabricated by layer-by-layer assembly (LbL). Interestingly, these LbL films absorb across the visible light region (400-750 nm) and facilitate directional energy transfer. Due to the high spectral overlap and oriented transition dipole moments of the donor (PDICl4 and PDIOPh2) and acceptor (S1) components, directional long-range energy transfer from the bluest to reddest absorber was successfully demonstrated in the multicomponent MOF-like films.
View Article and Find Full Text PDFChem Commun (Camb)
February 2015
A critical review of the emerging field of MOFs for photon collection and subsequent energy transfer is presented. Discussed are examples involving MOFs for (a) light harvesting, using (i) MOF-quantum dots and molecular chromophores, (ii) chromophoric MOFs, and (iii) MOFs with light-harvesting properties, and (b) energy transfer, specifically via the (i) Förster energy transfer and (ii) Dexter exchange mechanism.
View Article and Find Full Text PDFHerein, we demonstrate the robustness of layer-by-layer (LbL)-assembled, pillared-paddlewheel-type MOF films toward conversion to new or modified MOFs via solvent-assisted linker exchange (SALE) and post-assembly linker metalation. Further, we show that LbL synthesis can afford MOFs that have proven inaccessible through other de novo strategies.
View Article and Find Full Text PDFWe report the synthesis and characterization of two thin films (DA-MOF and L2-MOF) of porphyrin-based MOFs on functionalized surfaces using a layer-by-layer (LbL) approach. Profilometry measurements confirm that the film thickness increases systematically with number of growth cycles. Polarization excitation and fluorescence measurements indicate that the porphyrin units are preferentially oriented, while X-ray reflectivity scans point to periodic ordering.
View Article and Find Full Text PDF