Publications by authors named "Monica C Munoz Torres"

Article Synopsis
  • Biomedical research is increasingly integrating artificial intelligence (AI) and machine learning (ML) to tackle complex challenges, necessitating a focus on ethical and explainable AI (XAI) due to the complexities of deep learning methods.
  • The NIH's Bridge2AI program is working on creating new flagship datasets aimed at enhancing AI/ML applications in biomedicine while establishing best practices, tools, standards, and criteria for assessing the data's AI readiness, including legal and ethical considerations.
  • The article outlines foundational criteria developed by the NIH Bridge2AI Standards Working Group to ensure the scientific rigor and ethical use of AI in biomedical research, emphasizing the need for ongoing adaptation as the field evolves.
View Article and Find Full Text PDF
Article Synopsis
  • Ontologies are key for managing consensus knowledge in areas like biomedical, environmental, and food sciences, but creating and maintaining them requires significant resources and collaboration among experts.
  • The Dynamic Retrieval Augmented Generation of Ontologies using AI (DRAGON-AI) leverages Large Language Models and Retrieval Augmented Generation to automate the generation of ontology components, showing high precision in relationship creation and ability to produce acceptable definitions.
  • While DRAGON-AI can significantly support ontology development, expert curators remain essential for overseeing the quality and accuracy of the generated content.
View Article and Find Full Text PDF
Article Synopsis
  • The GA4GH Phenopacket Schema, released in 2022 and approved as a standard by ISO, allows the sharing of clinical and genomic data, including phenotypic descriptions and genetic information, to aid in genomic diagnostics.
  • Phenopacket Store Version 0.1.19 offers a collection of 6668 phenopackets linked to various diseases and genes, making it a crucial resource for testing algorithms and software in genomic research.
  • This collection represents the first extensive case-level, standardized phenotypic information sourced from medical literature, supporting advancements in diagnostic genomics and machine learning applications.
View Article and Find Full Text PDF
Article Synopsis
  • Phenotypic data helps us understand how genomic variations affect living organisms and is vital for clinical applications like diagnosing diseases and developing treatments.
  • The field of phenomics aims to unify and analyze the vast amounts of phenotypic data collected over time, but faces challenges due to inconsistent methods and vocabularies used to record this information.
  • The Unified Phenotype Ontology (uPheno) framework offers a solution by providing a standardized system for organizing phenotype terms, allowing for better integration of data across different species and improving research on genotype-phenotype associations.
View Article and Find Full Text PDF

The Global Alliance for Genomics and Health (GA4GH) Phenopacket Schema was released in 2022 and approved by ISO as a standard for sharing clinical and genomic information about an individual, including phenotypic descriptions, numerical measurements, genetic information, diagnoses, and treatments. A phenopacket can be used as an input file for software that supports phenotype-driven genomic diagnostics and for algorithms that facilitate patient classification and stratification for identifying new diseases and treatments. There has been a great need for a collection of phenopackets to test software pipelines and algorithms.

View Article and Find Full Text PDF

The 24th annual Bioinformatics Open Source Conference ( BOSC 2023) was part of the 2023i conference on Intelligent Systems for Molecular Biology and the European Conference on Computational Biology (ISMB/ECCB 2023). Launched in 2000 and held yearly since, BOSC is the premier meeting covering open-source bioinformatics and open science. Like ISMB 2022, the 2023 meeting was a hybrid conference, with the in-person component hosted in Lyon, France.

View Article and Find Full Text PDF

Bridging the gap between genetic variations, environmental determinants, and phenotypic outcomes is critical for supporting clinical diagnosis and understanding mechanisms of diseases. It requires integrating open data at a global scale. The Monarch Initiative advances these goals by developing open ontologies, semantic data models, and knowledge graphs for translational research.

View Article and Find Full Text PDF

Background: Navigating the clinical literature to determine the optimal clinical management for rare diseases presents significant challenges. We introduce the Medical Action Ontology (MAxO), an ontology specifically designed to organize medical procedures, therapies, and interventions.

Methods: MAxO incorporates logical structures that link MAxO terms to numerous other ontologies within the OBO Foundry.

View Article and Find Full Text PDF

The Human Phenotype Ontology (HPO) is a widely used resource that comprehensively organizes and defines the phenotypic features of human disease, enabling computational inference and supporting genomic and phenotypic analyses through semantic similarity and machine learning algorithms. The HPO has widespread applications in clinical diagnostics and translational research, including genomic diagnostics, gene-disease discovery, and cohort analytics. In recent years, groups around the world have developed translations of the HPO from English to other languages, and the HPO browser has been internationalized, allowing users to view HPO term labels and in many cases synonyms and definitions in ten languages in addition to English.

View Article and Find Full Text PDF

Navigating the vast landscape of clinical literature to find optimal treatments and management strategies can be a challenging task, especially for rare diseases. To address this task, we introduce the Medical Action Ontology (MAxO), the first ontology specifically designed to organize medical procedures, therapies, and interventions in a structured way. Currently, MAxO contains 1757 medical action terms added through a combination of manual and semi-automated processes.

View Article and Find Full Text PDF

Motivation: Knowledge graphs (KGs) are a powerful approach for integrating heterogeneous data and making inferences in biology and many other domains, but a coherent solution for constructing, exchanging, and facilitating the downstream use of KGs is lacking.

Results: Here we present KG-Hub, a platform that enables standardized construction, exchange, and reuse of KGs. Features include a simple, modular extract-transform-load pattern for producing graphs compliant with Biolink Model (a high-level data model for standardizing biological data), easy integration of any OBO (Open Biological and Biomedical Ontologies) ontology, cached downloads of upstream data sources, versioned and automatically updated builds with stable URLs, web-browsable storage of KG artifacts on cloud infrastructure, and easy reuse of transformed subgraphs across projects.

View Article and Find Full Text PDF

Existing phenotype ontologies were originally developed to represent phenotypes that manifest as a character state in relation to a wild-type or other reference. However, these do not include the phenotypic trait or attribute categories required for the annotation of genome-wide association studies (GWAS), Quantitative Trait Loci (QTL) mappings or any population-focussed measurable trait data. The integration of trait and biological attribute information with an ever increasing body of chemical, environmental and biological data greatly facilitates computational analyses and it is also highly relevant to biomedical and clinical applications.

View Article and Find Full Text PDF

Existing phenotype ontologies were originally developed to represent phenotypes that manifest as a character state in relation to a wild-type or other reference. However, these do not include the phenotypic trait or attribute categories required for the annotation of genome-wide association studies (GWAS), Quantitative Trait Loci (QTL) mappings or any population-focused measurable trait data. Moreover, variations in gene expression in response to environmental disturbances even without any genetic alterations can also be associated with particular biological attributes.

View Article and Find Full Text PDF

Technological advances in both genome sequencing and prenatal imaging are increasing our ability to accurately recognize and diagnose Mendelian conditions prenatally. Phenotype-driven early genetic diagnosis of fetal genetic disease can help to strategize treatment options and clinical preventive measures during the perinatal period, to plan in utero therapies, and to inform parental decision-making. Fetal phenotypes of genetic diseases are often unique and at present are not well understood; more comprehensive knowledge about prenatal phenotypes and computational resources have an enormous potential to improve diagnostics and translational research.

View Article and Find Full Text PDF

Despite progress in the development of standards for describing and exchanging scientific information, the lack of easy-to-use standards for mapping between different representations of the same or similar objects in different databases poses a major impediment to data integration and interoperability. Mappings often lack the metadata needed to be correctly interpreted and applied. For example, are two terms equivalent or merely related? Are they narrow or broad matches? Or are they associated in some other way? Such relationships between the mapped terms are often not documented, which leads to incorrect assumptions and makes them hard to use in scenarios that require a high degree of precision (such as diagnostics or risk prediction).

View Article and Find Full Text PDF

The Global Alliance for Genomics and Health (GA4GH) aims to accelerate biomedical advances by enabling the responsible sharing of clinical and genomic data through both harmonized data aggregation and federated approaches. The decreasing cost of genomic sequencing (along with other genome-wide molecular assays) and increasing evidence of its clinical utility will soon drive the generation of sequence data from tens of millions of humans, with increasing levels of diversity. In this perspective, we present the GA4GH strategies for addressing the major challenges of this data revolution.

View Article and Find Full Text PDF
Article Synopsis
  • The Human Phenotype Ontology (HPO) was established in 2008 to standardize the description and analysis of phenotypic abnormalities in human diseases, and has become a global reference for phenotype data.
  • Recent updates to the HPO include expansions in various medical fields, with improvements such as the seizure subontology aligning with international epilepsy guidelines, demonstrating their clinical validity.
  • Ongoing efforts focus on harmonizing phenotypic definitions across the HPO and other ontologies, enhancing computational tools for cross-species disease research, and translating the HPO into indigenous languages for broader accessibility.
View Article and Find Full Text PDF

Integrated, up-to-date data about SARS-CoV-2 and COVID-19 is crucial for the ongoing response to the COVID-19 pandemic by the biomedical research community. While rich biological knowledge exists for SARS-CoV-2 and related viruses (SARS-CoV, MERS-CoV), integrating this knowledge is difficult and time-consuming, since much of it is in siloed databases or in textual format. Furthermore, the data required by the research community vary drastically for different tasks; the optimal data for a machine learning task, for example, is much different from the data used to populate a browsable user interface for clinicians.

View Article and Find Full Text PDF

Unlabelled: Integrated, up-to-date data about SARS-CoV-2 and coronavirus disease 2019 (COVID-19) is crucial for the ongoing response to the COVID-19 pandemic by the biomedical research community. While rich biological knowledge exists for SARS-CoV-2 and related viruses (SARS-CoV, MERS-CoV), integrating this knowledge is difficult and time consuming, since much of it is in siloed databases or in textual format. Furthermore, the data required by the research community varies drastically for different tasks - the optimal data for a machine learning task, for example, is much different from the data used to populate a browsable user interface for clinicians.

View Article and Find Full Text PDF

While abnormalities related to carbohydrates (glycans) are frequent for patients with rare and undiagnosed diseases as well as in many common diseases, these glycan-related phenotypes (glycophenotypes) are not well represented in knowledge bases (KBs). If glycan-related diseases were more robustly represented and curated with glycophenotypes, these could be used for molecular phenotyping to help to realize the goals of precision medicine. Diagnosis of rare diseases by computational cross-species comparison of genotype-phenotype data has been facilitated by leveraging ontological representations of clinical phenotypes, using Human Phenotype Ontology (HPO), and model organism ontologies such as Mammalian Phenotype Ontology (MP) in the context of the Monarch Initiative.

View Article and Find Full Text PDF

In biology and biomedicine, relating phenotypic outcomes with genetic variation and environmental factors remains a challenge: patient phenotypes may not match known diseases, candidate variants may be in genes that haven't been characterized, research organisms may not recapitulate human or veterinary diseases, environmental factors affecting disease outcomes are unknown or undocumented, and many resources must be queried to find potentially significant phenotypic associations. The Monarch Initiative (https://monarchinitiative.org) integrates information on genes, variants, genotypes, phenotypes and diseases in a variety of species, and allows powerful ontology-based search.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on the genome sequencing of the milkweed bug Oncopeltus fasciatus, contributing to the understanding of the Hemiptera insect order.
  • The genome, which is 926 Mb in size, provides insights into protein-coding genes, molecular evolution, and the relationship between feeding ecology and gene structure.
  • This research enhances the molecular genetic toolkit for hemipteran species and emphasizes Oncopeltus as a valuable experimental model for future studies in insect genomics.
View Article and Find Full Text PDF

The future of agricultural research depends on data. The sheer volume of agricultural biological data being produced today makes excellent data management essential. Governmental agencies, publishers and science funders require data management plans for publicly funded research.

View Article and Find Full Text PDF