Publications by authors named "Monica C F Ferraro"

Different chemometric methods such as classical least squares (CLS), principal components regression (PCR) and partial least squares with one dependent variable (PLS-1) applied on UV spectral data (0 D) and on their first derivatives (1 D) were evaluated for the simultaneous quantification of samples containing mixtures of amiloride hydrochloride, atenolol, hydrochlorothiazide and timolol maleate. Their performances were compared by means of ANOVA tests, which evidenced that 0 D-PCR, 0D-PLS-1, 1D-PCR, 1D-PLS-1, were reproducible and gave statistically similar results, while 0 D-CLS and 1D-CLS displayed higher variances than the former and failed to comply with the Levene's variance homogeneity test at different stages of the method comparison and validation process. The four statistically equivalent procedures were successfully applied to the analysis of synthetic samples with two to four analytes and to commercial tablet preparations containing amiloride hydrochloride and hydrochlorothiazide alone or in association with atenolol or timolol maleate.

View Article and Find Full Text PDF

Resolution of binary mixtures of atenolol (ATE) and chlorthalidone (CTD) with minimum sample pre-treatment and without analyte separation has been successfully achieved, using a new and rapid method based on partial least squares (PLS1) analysis of UV spectral data. The simultaneous determination of both analytes was possible by PLS1 processing of sample absorbances between 255 and 300 nm for ATE and evaluation of absorbances in the 253-268 nm region for CTD. The mean recoveries for synthetic samples were 100.

View Article and Find Full Text PDF

The use of multivariate spectrophotometric calibration for the simultaneous analysis of synthetic samples and commercial tablet preparations containing hydrochlorothiazide (HCT) and amiloride hydrochloride (AMH) is reported. Partial least squares (PLS-1) analysis of electronic absorption spectral data allowed the rapid and accurate resolution of mixtures in which the analyte ratios were approximately 10:1, without the need of a previous separation step and without interference from other sample constituents. The method, validated by the analysis of synthetic mixtures of both drugs, where accuracy over the linear working range as well as inter- and intra-assay precision were determined, was used in the concentration ranges of 21.

View Article and Find Full Text PDF