Publications by authors named "Monica Bayes"

The Catalan Initiative for the Earth BioGenome Project (CBP) is an EBP-affiliated project network aimed at sequencing the genome of the >40 000 eukaryotic species estimated to live in the Catalan-speaking territories (Catalan Linguistic Area, CLA). These territories represent a biodiversity hotspot. While covering less than 1% of Europe, they are home to about one fourth of all known European eukaryotic species.

View Article and Find Full Text PDF

Rare disease patients are more likely to receive a rapid molecular diagnosis nowadays thanks to the wide adoption of next-generation sequencing. However, many cases remain undiagnosed even after exome or genome analysis, because the methods used missed the molecular cause in a known gene, or a novel causative gene could not be identified and/or confirmed. To address these challenges, the RD-Connect Genome-Phenome Analysis Platform (GPAP) facilitates the collation, discovery, sharing, and analysis of standardized genome-phenome data within a collaborative environment.

View Article and Find Full Text PDF

Background: Previous research has implicated de novo and inherited truncating mutations in autism-spectrum disorder. We aim to investigate whether the load of inherited truncating mutations contributes similarly to high-functioning autism, and to characterize genes that harbour de novo variants in high-functioning autism.

Methods: We performed whole-exome sequencing in 20 high-functioning autism families (average IQ = 100).

View Article and Find Full Text PDF
Article Synopsis
  • Regulated erroneous protein translation (adaptive mistranslation) in a human pathogen increases proteome diversity, leading to phenotypic variability and enhanced fluconazole resistance.
  • Evolving hypermistranslating strains showed increased drug tolerance and a faster acquisition of resistance compared to wild-type strains, revealing distinct genetic changes.
  • The study highlights the importance of adapting mistranslation mechanisms in understanding drug resistance evolution, providing insights crucial for addressing the rising threat of drug-resistant fungal infections.
View Article and Find Full Text PDF

The ascomycete Candida albicans is a normal resident of the gastrointestinal tract of humans and other warm-blooded animals. It occurs in a broad range of body sites and has high capacity to survive and proliferate in adverse environments with drastic changes in oxygen, carbon dioxide, pH, osmolarity, nutrients, and temperature. Its biology is unique due to flexible reassignment of the leucine CUG codon to serine and synthesis of statistical proteins.

View Article and Find Full Text PDF

Translational errors occur at high rates, and they influence organism viability and the onset of genetic diseases. To investigate how organisms mitigate the deleterious effects of protein synthesis errors during evolution, a mutant yeast strain was engineered to translate a codon ambiguously (mistranslation). It thereby overloads the protein quality-control pathways and disrupts cellular protein homeostasis.

View Article and Find Full Text PDF

We have performed a comparative ultrasequencing study of multiple colorectal lesions obtained simultaneously from four patients. Our data show that benign lesions (adenomatous or hyperplastic polyps) contain a high mutational load. Additionally multiple synchronous colorectal lesions show non overlapping mutational signatures highlighting the degree of heterogeneity between multiple specimens in the same patient.

View Article and Find Full Text PDF

Attention-deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder with high heritability. At least 30% of patients diagnosed in childhood continue to suffer from ADHD during adulthood and genetic risk factors may play an essential role in the persistence of the disorder throughout lifespan. To date, genome-wide association studies (GWAS) of ADHD have been completed in seven independent datasets, six of which were pediatric samples and one on persistent ADHD using a DNA-pooling strategy, but none of them reported genome-wide significant associations.

View Article and Find Full Text PDF

Background: Autism spectrum disorders (ASD) are highly inherited developmental syndromes, resulting from a complex interaction between environmental and genetic factors. To date, only a limited number of genetic variants have been discovered with respect to autism, and their contribution to the development of the disorder has not been clearly determined. Investigation of specific autistic symptomatology may improve the chances of identifying related genes and may help to better understand these disorders.

View Article and Find Full Text PDF
Article Synopsis
  • * The CNTNAP1 gene mutation, found in multiple families, disrupts nerve conduction and affects myelinated axons, crucial for proper nerve function.
  • * A mutation in the ADCY6 gene is associated with a lack of myelin in the peripheral nervous system, indicating its vital role in myelination through the cAMP signaling pathway, highlighting novel genetic causes of severe axoglial diseases.
View Article and Find Full Text PDF

Attention-deficit and hyperactivity disorder (ADHD) is a common psychiatric disorder with a worldwide prevalence of 5-6% in children and 4.4% in adults. Recently, copy number variations (CNVs) have been implicated in different neurodevelopmental disorders such as ADHD.

View Article and Find Full Text PDF

Urothelial bladder cancer (UBC) is heterogeneous at the clinical, pathological and genetic levels. Tumor invasiveness (T) and grade (G) are the main factors associated with outcome and determine patient management. A discovery exome sequencing screen (n = 17), followed by a prevalence screen (n = 60), identified new genes mutated in this tumor coding for proteins involved in chromatin modification (MLL2, ASXL2 and BPTF), cell division (STAG2, SMC1A and SMC1B) and DNA repair (ATM, ERCC2 and FANCA).

View Article and Find Full Text PDF
Article Synopsis
  • * Using data from the Psychiatric Genomics Consortium, researchers found varying degrees of genetic relationships between disorders like schizophrenia, bipolar disorder, and major depressive disorder, indicating some shared genetic factors.
  • * The study suggests that understanding these shared genetic influences could help improve disorder classifications and lead to better treatments by exploring common biological causes.
View Article and Find Full Text PDF

Many fungi restructured their proteomes through incorporation of serine (Ser) at thousands of protein sites coded by the leucine (Leu) CUG codon. How these fungi survived this potentially lethal genetic code alteration and its relevance for their biology are not understood. Interestingly, the human pathogen Candida albicans maintains variable Ser and Leu incorporation levels at CUG sites, suggesting that this atypical codon assignment flexibility provided an effective mechanism to alter the genetic code.

View Article and Find Full Text PDF

Background: Epidermal Growth Factor (EGF) plays an important function in the regulation of cell growth, proliferation, and differentiation by binding to its receptor (EGFR) and providing cancer cells with increased survival responsiveness. Signal transduction carried out by EGF has been extensively studied at both transcriptional and post-transcriptional levels. Little is known about the involvement of microRNAs (miRNAs) in the EGF signaling pathway.

View Article and Find Full Text PDF

Impairment of language abilities is a common feature in autistic individuals. Heterozygous mutations in the Forkhead Box P2 (FOXP2) gene lead to a severe spoken language disorder. Recently, several studies have pinpointed the involvement of common variants of the Contactin-Associated Protein-Like 2 (CNTNAP2) gene, whose transcription is regulated by the product of FOXP2, in several disorders characterized by language impairments such as autism, specific language impairment (SLI), and selective mutism (SM).

View Article and Find Full Text PDF

We have extensively characterized the DNA methylomes of 139 patients with chronic lymphocytic leukemia (CLL) with mutated or unmutated IGHV and of several mature B-cell subpopulations through the use of whole-genome bisulfite sequencing and high-density microarrays. The two molecular subtypes of CLL have differing DNA methylomes that seem to represent epigenetic imprints from distinct normal B-cell subpopulations. DNA hypomethylation in the gene body, targeting mostly enhancer sites, was the most frequent difference between naive and memory B cells and between the two molecular subtypes of CLL and normal B cells.

View Article and Find Full Text PDF

Attention-deficit hyperactivity disorder (ADHD) is a neurobehavioral disorder characterized by inappropriate difficulties to sustain attention, control impulses and modulate activity level. Although ADHD is one of the most prevalent childhood psychiatric disorders, it also persists into adulthood in around 30-50% of the cases. Based on the effect of psychostimulants used in the pharmacological treatment of ADHD, dysfunctions in neuroplasticity mechanisms and synapses have been postulated to be involved in the pathophysiology of ADHD.

View Article and Find Full Text PDF

Spinal muscular atrophy (SMA) is a clinically and genetically heterogeneous disease characterized by the degeneration of lower motor neurons. The most frequent form is linked to mutations in SMN1. Childhood SMA associated with progressive myoclonic epilepsy (SMA-PME) has been reported as a rare autosomal-recessive condition unlinked to mutations in SMN1.

View Article and Find Full Text PDF

Objectives: Attention-deficit/hyperactivity disorder (ADHD) is a common psychiatric disorder manifesting as symptoms of inattention, hyperactivity, and/or impulsivity. Learning disabilities co-occur with ADHD in 20-30% of cases and this high co-occurrence raises the possibility of a common etiological background. Forkhead box P2 (FOXP2) encodes a transcription factor involved in speech and language impairment and in the control of the corticobasal ganglia circuits known to be relevant in ADHD, suggesting a possible role of FOXP2 in ADHD.

View Article and Find Full Text PDF

Background: Recent data from neuroimaging, genetic and clinical trials and animal models suggest a role for altered glutamatergic neuro transmission in the pathogenesis of obsessive-compulsive disorder (OCD). The aim of this study was to investigate whether variants in the GRIN2B gene, the gene encoding the NR2 subunit of the N-methyl-D-aspartate (NMDA) glutamate receptor, may contribute to genetic susceptibility to OCD or to different OCD subphenotypes.

Methods: Between 2003 and 2008, we performed a case-control association study in which we genotyped 10 tag single-nucleotide polymorphisms (SNPs) in the 3' untranslated region (3' UTR) of GRIN2B.

View Article and Find Full Text PDF

Objectives: Several pharmacological and genetic studies support the involvement of the dopamine neurotransmitter system in the aetiology of attention-deficit hyperactivity disorder (ADHD). Based on this information we evaluated the contribution to ADHD of nine genes involved in dopaminergic neurotransmission (DRD1, DRD2, DRD3, DRD4, DRD5, DAT1, TH, DBH and COMT).

Methods: We genotyped a total of 61 tagging single nucleotide polymorphisms (SNPs) in a sample of 533 ADHD patients (322 children and 211 adults), 533 sex-matched unrelated controls and additional 196 nuclear ADHD families from Spain.

View Article and Find Full Text PDF

Objectives: Neurotransmitter systems and neurotrophic factors can be considered strong candidates for autism spectrum disorder (ASD). The serotoninergic and dopaminergic systems are involved in neurotransmission, brain maturation and cortical organization, while neurotrophic factors (NTFs) participate in neurodevelopment, neuronal survival and synapses formation. We aimed to test the contribution of these candidate pathways to autism through a case-control association study of genes selected both for their role in central nervous system functions and for pathophysiological evidences.

View Article and Find Full Text PDF

Second generation sequencing (2ndGS) technologies generate unprecedented amounts of sequence data very rapidly and at relatively limited costs, allowing the sequence of a human genome to be completed in a few weeks. The principle is on the basis of generating millions of relatively short reads from amplified single DNA fragments using iterative cycles of nucleotide extensions. However, the data generated on this scale present new challenges in interpretation, data analysis and data management.

View Article and Find Full Text PDF