Vitamin A and its derivatives (retinoids) act as potent regulators in many aspects of mammalian reproduction, development, repair, and maintenance of differentiated tissue functioning. Unlike other vitamins, Vitamin A and retinoids, which have hormonal actions, present significant toxicity, which plays roles in clinically relevant situations, such as hypervitaminosis A and retinoic acid ("differentiation") syndrome. Although clinical presentation is conspicuous in states of insufficient or excessive Vitamin A and retinoid concentration, equally relevant effects on host resistance to specific infectious agents, and in the general maintenance of immune homeostasis, may go unnoticed, because their expression requires either pathogen exposure or the presence of inflammatory co-morbidities.
View Article and Find Full Text PDFDespite the close relationship of eosinophils and neutrophils, these granulocyte lineages respond to distinct cytokines and play unique roles in immune responses. They nevertheless respond to shared physiological/pharmacological regulators, including glucocorticoids and retinoids, and to ubiquitous mediators, including NO. Others showed that, in humans, all-trans retinoic acid (ATRA) suppresses eosinophil differentiation, but promotes neutrophil differentiation.
View Article and Find Full Text PDFUp- and downregulation of eosinopoiesis control pulmonary eosinophilia in human asthma. In mice, eosinopoiesis is suppressed in vitro by prostaglandin E2 (PGE2) and in vivo by diethylcarbamazine, through a proapoptotic mechanism sequentially requiring inducible NO synthase (iNOS) and the ligand for death receptor CD95 (CD95L). We examined the roles of iNOS, cAMP-mediated signaling, caspases, and CD95L/CD95 in suppression of eosinopoiesis by PGE2 and other agents signaling through cAMP.
View Article and Find Full Text PDFRationale: The mechanism of action of diethylcarbamazine (DEC), an antifilarial drug effective against tropical pulmonary eosinophilia, remains controversial. DEC effects on microfilariae depend on inducible NO synthase (iNOS). In eosinophilic pulmonary inflammation, its therapeutic mechanism has not been established.
View Article and Find Full Text PDF