Publications by authors named "Monica Ardanuy"

Currently, millions of tons of textile waste from the garment and textile industries are generated worldwide each year. As a promising option in terms of sustainability, textile waste fibers could be used as internal reinforcement of cement-based composites by enhancing ductility and decreasing crack propagation. To this end, two extensive experimental programs were carried out, involving the use of either fractions of short random fibers at 6-10% by weight or nonwoven fabrics in 3-7 laminate layers in the textile waste-reinforcement of cement, and the mechanical and durability properties of the resulting composites were characterized.

View Article and Find Full Text PDF

Stiffness of material is a key parameter that allows the use of material for structural or semi-structural purposes. Besides, lightweight materials are increasingly calling the attention of the industry. Environmental impact is also increasing in its importance.

View Article and Find Full Text PDF

In this article, with the aim of promoting sustainability, contributing to the circular economy and the fight against climate change, the production of composite materials from Bio-polyethylene reinforced with corn stover fibers has been studied. The behavior of the materials obtained has been studied experimentally and by mathematical models of micromechanics. The composite materials were produced by extrusion and then injection with from 10 to 50 wt.

View Article and Find Full Text PDF

The enzymatic functionalization of lignocellulosic fibers using oxidoreductases was successfully achieved by targeting lignin moieties as grafting sites on the surface. In this study, a novel strategy for hydrophobization of lignocelluloses was investigated, which involved the laccase/TEMPO-mediated grafting of octadecylamine (OA) onto both lignin and cellulose components of jute fabrics. The results showed that OA monomers were successfully grafted onto jute fabric surface using the laccase/TEMPO system with the grafting percentage and efficiency values of 0.

View Article and Find Full Text PDF

The replacement of commodity polyolefin, reinforced with glass fiber (GF), by greener alternatives has been a topic of research in recent years. Cellulose fibers have shown, under certain conditions, enough tensile capacities to replace GF, achieving competitive mechanical properties. However, if the objective is the production of environmentally friendlier composites, it is necessary to replace oil-derived polymer matrices by bio-based or biodegradable ones, depending on the application.

View Article and Find Full Text PDF

Composite materials have attracted the attention of some industrial fields due to their lightness and relatively good mechanical properties. One of these properties is impact strength, essential to ensure the processability and application of these materials under impact conditions. In addition, it is known that water absorption has a plasticizing effect in polymers and polymer composites which can change the properties of such materials and limit their use.

View Article and Find Full Text PDF

The aim of this study is to propose and explore a novel approach for the production of cellular lightweight natural fibre, nonwoven, fabric-reinforced biocomposites by means of gas dissolution foaming from composite precursors of polyhydroxybutyrate-based matrix and flax fabric reinforcement. The main challenge is the development of a regular cellular structure in the polymeric matrix to reach a weight reduction while keeping a good fibre-matrix stress transfer and adhesion. The viability of the process is evaluated through the analysis of the cellular structure and morphology of the composites.

View Article and Find Full Text PDF

This work focused on the evaluation of the kinetics of dyeing polyester fabrics with high molecular weight disperse dyes, at low temperature by solvent microemulsion. This study also compared the effect of two non-toxic agro-sourced auxiliaries (-vanillin and coumarin) using a non-toxic organic solvent. A dyeing bath consisting of a micro-emulsion system involving a small proportion of -butyl acetate was used, and the kinetics of dyeing were analysed at four temperatures (83, 90, 95 and 100 °C).

View Article and Find Full Text PDF

In this work, polyamide 11 (PA11) and stone ground wood fibres (SGW) were used, as an alternative to non-bio-based polymer matrices and reinforcements, to obtain short fibre reinforced composites. The impact of the reinforcement on the thermal degradation, thermal transitions and microstructure of PA11-based composites were studied. Natural fibres have lower degradation temperatures than PA11, thus, composites showed lower onset degradation temperatures than PA11, as well.

View Article and Find Full Text PDF

The aim of this study is to develop a process to produce high-performance cement-based composites reinforced with flax nonwoven fabrics, analyzing the influence of the fabric structure-thickness and entanglement-on mechanical behavior under flexural and tensile loadings. For this purpose, composite with flax nonwoven fabrics with different thicknesses were first prepared and their cement infiltration was evaluated with backscattered electron (BSE) images. The nonwoven fabrics with the optimized thickness were then subjected to a water treatment to improve their stability to humid environments and the fiber-matrix adhesion.

View Article and Find Full Text PDF

This research analyzes the effects of different treatments on flax nonwoven (NW) fabrics which are intended for composite reinforcement. The treatments applied were of two different kinds: a wet/dry cycling which helps to stabilize the cellulosic fibers against humidity changes and plasma treatments with air, argon and ethylene gases considering different conditions and combinations, which produce variation on the chemical surface composition of the NWs. The resulting changes in the chemical surface composition, wetting properties, thermal stability and mechanical properties were determined.

View Article and Find Full Text PDF

Novel lightweight composite foams based on recycled polypropylene reinforced with cellulosic fibres obtained from agricultural residues were prepared and characterized. These composites, initially prepared by melt-mixing recycled polypropylene with variable fibre concentrations (10-25 wt.%), were foamed by high-pressure CO(2) dissolution, a clean process which avoids the use of chemical blowing agents.

View Article and Find Full Text PDF