The metastable wurtzite crystal phase in gallium phosphide (WZ GaP) is a relatively new structure with little available information about its emission properties compared to the most stable zinc-blend phase. Here, the effect of growth conditions of WZ GaP nano- and microstructures obtained via chemical beam epitaxy on the optical properties was studied using power- and temperature-dependent photoluminescence (PL). We showed that the PL spectra are dominated by two strong broad emission bands at 1.
View Article and Find Full Text PDFTo evaluate the flexural strength (FS) and flexural modulus (FM) of a commercial 3Y-TZ0P ceramic after artificial aging and either without or with two application times of non-thermal plasma treatments (NTP). In addition, changes in crystalline phase transformation and surface nano-topography after NTP application, during different aging periods, were evaluated. Ninety 3Y-TZP bars (45x4x3 mm) were made for FS and FM testing, and assigned to nine groups (n=10): no NTP/no aging (Control); no NTP/4h aging; no NTP/30h aging; 10s NTP/no aging; 10s NTP/4h aging; 10s NTP/30h aging; 60s NTP/no aging; 60s NTP/4h aging and 60s NTP/30h aging.
View Article and Find Full Text PDFThe adhesion force between the tip of an atomic force microscope cantilever derivatized with nimodipine (a calcium blocker, from the dihydropyridine class, currently used in clinical medicine for hypertension) and living cells of Saccharomyces cerevisiae (unicellular eukaryotes which portray ultrastructural features characteristic of higher eukaryotic cells) was measured. This methodology allowed us to locate (and visualize) pores on the cell surface which may be responsible for calcium transportation in the living cells. The interaction of the cantilever derivatized with the calcium blocker and a pore, which can be a calcium channel, is more intense than a non-derivatized cantilever and the pore.
View Article and Find Full Text PDF