The female gametophyte of flowering plants, called the embryo sac, develops from a haploid cell named the functional megaspore, which is specified after meiosis by the diploid sporophyte. In Arabidopsis, the functional megaspore undergoes three syncitial mitotic divisions followed by cellularization to form seven cells of four cell types including two female gametes. The plant hormone auxin is important for sporophytic developmental processes, and auxin levels are known to be regulated by biosynthesis and transport.
View Article and Find Full Text PDFThe Public Intellectual Property Resource for Agriculture (PIPRA) was founded in 2004 by the Rockefeller Foundation in response to concerns that public investments in agricultural biotechnology benefiting developing countries were facing delays, high transaction costs and lack of access to important technologies due to intellectual property right (IPR) issues. From its inception, PIPRA has worked broadly to support a wide range of research in the public sector, in specialty and minor acreage crops as well as crops important to food security in developing countries. In this paper, we review PIPRA's work, discussing the failures, successes, and lessons learned during its years of operation.
View Article and Find Full Text PDFGEX1 is a plasma membrane protein that is conserved among plant species, and has previously been shown to be expressed in sperm cells and some sporophytic tissues. Here we show that GEX1 is also expressed in the embryo sac before cellularization, in the egg cell after cellularization, in the zygote/embryo immediately after fertilization and in the pollen vegetative cell. We functionally characterize GEX1 in Arabidopsis thaliana, and show that it is a versatile protein that performs functions during male and female gametophyte development, and during early embryogenesis.
View Article and Find Full Text PDFNatural cis-antisense siRNAs (cis-nat-siRNAs) are a recently characterized class of small regulatory RNAs that are widespread in eukaryotes. Despite their abundance, the importance of their regulatory activity is largely unknown. The only functional role for eukaryotic cis-nat-siRNAs that has been described to date is in environmental stress responses in plants.
View Article and Find Full Text PDFPlant reproduction involves gamete production by a haploid generation, the gametophyte. For flowering plants, a defining characteristic in the evolution from the 'naked-seed' plants, or gymnosperms, is a reduced female gametophyte, comprising just seven cells of four different types--a microcosm of pattern formation and gamete specification about which only little is known. However, several genes involved in the differentiation, fertilization and post-fertilization functions of the female gametophyte have been identified and, recently, the morphogenic activity of the plant hormone auxin has been found to mediate patterning and egg cell specification.
View Article and Find Full Text PDFThe female reproductive unit of flowering plants, the haploid female gametophyte, is highly reduced relative to other land plants. We show that patterning of the Arabidopsis female gametophyte depends on an asymmetric distribution of the hormone auxin during its syncitial development. Furthermore, this auxin gradient is correlated with location-specific auxin biosynthesis, rather than auxin efflux that directs patterning in the diploid sporophytic tissues comprising the rest of the plant.
View Article and Find Full Text PDFDouble fertilization in flowering plants occurs when the two sperm cells, carried by the pollen tube, are released in a synergid cell of the embryo sac and then fertilize the egg and the central cell. Proteins on the surfaces of the sperm, egg, central, and synergid cells might be important for guidance and recognition/fusion of the gametes. Here, we present functional analyses of Arabidopsis GEX3, which encodes a plasma membrane-localized protein that has homologs in other plants.
View Article and Find Full Text PDFARR22 (At3g04280) is a novel Type A response regulator whose function in Arabidopsis is unknown. RT-PCR analysis has shown that expression of the gene takes place in flowers and developing pods with the tissues accumulating different proportions of splice variants. Spatial analysis of expression, using ARR22::GUS plants as a marker, has revealed that the reporter protein accumulates specifically at the junction between the funiculus and the chalazal tissue.
View Article and Find Full Text PDF