Cloud water samples from Whiteface Mountain, NY were used to develop a combined sampling and gas chromatography-mass spectrometric (GCMS) protocol for evaluating the complex mixture of highly polar organic compounds (HPOC) present in this atmospheric medium. Specific HPOC of interest were mono- and di keto-acids which are thought to originate from photochemical reactions of volatile unsaturated hydrocarbons from biogenic and manmade emissions and be a major fraction of atmospheric carbon. To measure HPOC mixtures and the individual keto-acids in cloud water, samples first must be derivatized for clean elution and measurement, and second, have low overall background of the target species as validated by GCMS analysis of field and laboratory blanks.
View Article and Find Full Text PDFA chemical engineering approach for the rigorous construction, solution, and optimization of detailed kinetic models for biological processes is described. This modeling capability addresses the required technical components of detailed kinetic modeling, namely, the modeling of reactant structure and composition, the building of the reaction network, the organization of model parameters, the solution of the kinetic model, and the optimization of the model. Even though this modeling approach has enjoyed successful application in the petroleum industry, its application to biomedical research has just begun.
View Article and Find Full Text PDFEnviron Health Perspect
December 2002
This article describes a chemical characterization approach for complex organic compound mixtures associated with fine atmospheric particles of diameters less than 2.5 m (PM2.5).
View Article and Find Full Text PDFThe complex mixture of organic compounds in the atmosphere influences climate, air quality, and ecosystem processes. Atmospheric pressure electrospray ionization mass spectrometry (APESI-MS) was evaluated as a potential tool for direct measurement of the total suite of individual dissolved organic matter (DOM) compounds in rainwater. The APESI-MS response was linear to all DOM compounds of atmospheric significance examined as standard solutions.
View Article and Find Full Text PDF