Background: Mesenchymal stem cells (MSCs) are multipotent precursor cells with the ability to self-renew and differentiate into multiple cell linage, including the Schwann-like fate that promotes regeneration after lesion. Raman spectroscopy provides a precise characterization of the osteogenic, adipogenic, hepatogenic and myogenic differentiation of MSCs. However, the differentiation of bone marrow mesenchymal stem cells (BMSCs) towards a glial phenotype (Schwann-like cells) has not been characterized before using Raman spectroscopy.
View Article and Find Full Text PDFTobacco smoke contains several compounds with oxidant and pro-oxidant properties with the capability of producing structural changes in biomolecules, as well as cell damage. This work aimed to describe and analyse the effect of tobacco smoke on human blood components, red blood cell (RBC) membrane, haemoglobin (Hb) and blood plasma by Atomic Force Microscopy (AFM) and Raman spectroscopy. Our results indicate that tobacco induced RBC membrane nano-alterations characterized by diminished RBC diameter and increased nano-vesicles formation, and RBC fragility.
View Article and Find Full Text PDFPurpose: Ionizing radiation is nowadays effectively used in cancer treatments. However, the effect of irradiation in immune-system cells is poorly understood and remains controversial. The aim of this work was to determine the effect of γ-irradiation in the structural and functional properties of mice splenic cells.
View Article and Find Full Text PDFPurpose: Storage and ionizing radiation of human red blood cells (RBC) produce alterations on RBC membranes and modify their normal shape and functionality. We investigated early morphological and biochemical changes in RBC due to those stressing agents at the nanoscale level and their impact on blood quality.
Materials And Methods: Whole blood samples from healthy donors were γ-irradiated with 15, 25, 35, and 50 Gy.