The peptides encoded by the VGF gene are gaining biomedical interest and are increasingly being scrutinized as biomarkers for human disease. An endocrine/neuromodulatory role for VGF peptides has been suggested but never demonstrated. Furthermore, no study has demonstrated so far the existence of a receptor-mediated mechanism for any VGF peptide.
View Article and Find Full Text PDFDepot-dependent differences in adipose tissue physiology may reflect specialized functions and local interactions between adipocytes and surrounding tissues. We combined time-resolved microarray analyses of mesenteric- (MWAT), subcutaneous- (SWAT) and epididymal adipose tissue (EWAT) during high-fat feeding of male transgenic ApoE3Leiden mice with histology, targeted lipidomics and biochemical analyses of metabolic pathways to identify differentially regulated processes and site-specific functions. EWAT was found to exhibit physiological zonation.
View Article and Find Full Text PDFC57BL/6 (B6) mice subjected to a high-fat diet develop metabolic syndrome with obesity, hyperglycemia, and insulin resistance, whereas 129S6/SvEvTac (129) mice are relatively protected from this disorder because of differences in higher basal energy expenditure in 129 mice, leading to lower weight gain. At a molecular level, this difference correlates with a marked higher expression of uncoupling protein 1 (UCP1) and a higher degree of uncoupling in vitro in mitochondria isolated from muscle of 129 versus B6 mice. Detailed histological examination, however, reveals that this UCP1 is in mitochondria of brown adipocytes interspersed between muscle bundles.
View Article and Find Full Text PDFPeroxisome proliferator-activated receptor (PPAR)gamma is a key transcription factor facilitating fat deposition in adipose tissue through its proadipogenic and lipogenic actions. Human patients with dominant-negative mutations in PPARgamma display lipodystrophy and extreme insulin resistance. For this reason it was completely unexpected that mice harboring an equivalent mutation (P465L) in PPARgamma developed normal amounts of adipose tissue and were insulin sensitive.
View Article and Find Full Text PDFMice with a dominant-negative peroxisome proliferator-activated receptor gamma (PPARgamma) mutation (P465L) unexpectedly had normal amounts of adipose tissue. Here, we investigate the adipose tissue of the PPARgamma P465L mouse in detail. Microscopic analysis of interscapular adipose tissue of P465L PPARgamma mice revealed brown adipocytes with larger unilocular lipid droplets, indicative of reduced thermogenic capacity.
View Article and Find Full Text PDFSkeletal and cardiac muscle depend on high turnover of ATP made by mitochondria in order to contract efficiently. The transcriptional coactivator PGC-1alpha has been shown to function as a major regulator of mitochondrial biogenesis and respiration in both skeletal and cardiac muscle, but this has been based only on gain-of-function studies. Using genetic knockout mice, we show here that, while PGC-1alpha KO mice appear to retain normal mitochondrial volume in both muscle beds, expression of genes of oxidative phosphorylation is markedly blunted.
View Article and Find Full Text PDFPGC-1alpha is a coactivator of nuclear receptors and other transcription factors that regulates several metabolic processes, including mitochondrial biogenesis and respiration, hepatic gluconeogenesis, and muscle fiber-type switching. We show here that, while hepatocytes lacking PGC-1alpha are defective in the program of hormone-stimulated gluconeogenesis, the mice have constitutively activated gluconeogenic gene expression that is completely insensitive to normal feeding controls. C/EBPbeta is elevated in the livers of these mice and activates the gluconeogenic genes in a PGC-1alpha-independent manner.
View Article and Find Full Text PDFZinc-alpha2-glycoprotein (ZAG), a 43-kDa protein, is overexpressed in certain human malignant tumors and acts as a lipid-mobilizing factor to stimulate lipolysis in adipocytes leading to cachexia in mice implanted with ZAG-producing tumors. Because white adipose tissue (WAT) is an endocrine organ secreting a wide range of protein factors, including those involved in lipid metabolism, we have investigated whether ZAG is produced locally by adipocytes. ZAG mRNA was detected by RT-PCR in the mouse WAT depots examined (epididymal, perirenal, s.
View Article and Find Full Text PDF