Angew Chem Int Ed Engl
February 2021
The softness of nanohydrogels results in unique properties and recently attracted tremendous interest due to the multi-functionalization of interfaces. Herein, we study extremely soft temperature-sensitive ultra-low cross-linked (ULC) nanogels adsorbed to the solid/water interface by atomic force microscopy (AFM). The ultra-soft nanogels seem to disappear in classical imaging modes since a sharp tip fully penetrates these porous networks with very low forces in the range of steric interactions (ca.
View Article and Find Full Text PDFExploiting soft, adaptive microgels as building blocks for soft materials with controlled and predictable viscoelastic properties is of great interest for both industry and fundamental research. Here the flow properties of different poly(N-isopropylacrylamide) (pNIPAM) microgels are compared: regularly crosslinked versus ultra-low crosslinked (ULC) microgels. The latter are the softest microgels that can be produced via precipitation polymerization.
View Article and Find Full Text PDFThe structure of poly(-isopropylacrylamide) (PNIPAM) microgels adsorbed onto a solid substrate is investigated in the dry and hydrated states by means of atomic force microscopy (AFM). We compare two different systems: a regularly cross-linked microgel containing 5 mol % cross-linker and ultra-low cross-linked microgels (ULC) prepared without a dedicated cross-linker. Furthermore, we compare three different adsorption processes: (i) in situ adsorption from solution, (ii) spin-coating, and (iii) Langmuir-Blodgett deposition from an oil-water interface.
View Article and Find Full Text PDFWe develop a new strategy that involves the formation of microgel (MG) decorated liquid crystal (LC) droplets, which show remarkable stability. This system facilitates the analysis of the LC droplets that undergo an analyte-triggered conformational transition, thus optimizing the quantitation of aqueous analytes.
View Article and Find Full Text PDFWe highlight microgel/enzyme thin films that were deposited onto solid interfaces via two sequential steps, the adsorption of temperature- and pH-sensitive microgels, followed by their complexation with the enzyme choline oxidase, ChO. Two kinds of functional (ionic) microgels were compared in this work in regard to their adsorptive behavior and interaction with ChO, that is, poly(-isopropylacrylamide---(3-aminopropyl)methacrylamide), P(NIPAM--APMA), bearing primary amino groups, and poly(-isopropylacrylamide---[3-(dimethylamino) propyl]methacrylamide), P(NIPAM--DMAPMA), bearing tertiary amino groups. The stimuli-sensitive properties of the microgels in the solution were characterized by potentiometric titration, dynamic light scattering (DLS), and laser microelectrophoresis.
View Article and Find Full Text PDFWe propose a strategy to counteract the salt-driven disassembly of multiliposomal complexes made by electrostatic co-assembly of anionic small unilamellar liposomes and cationic star-shaped polyelectrolytes (made of quaternized poly(dimethylaminoethyl methacrylate) (qPDMAEMA100)3.1). The combined action of (qPDMAEMA100)3.
View Article and Find Full Text PDFConditional variations can lead to micellar transformations resulting in various (equilibrium) morphologies. However, creating differently shaped assemblies under the same final conditions (same ingredients, composition, temperature, etc.) is challenging.
View Article and Find Full Text PDFA time-saving phase-diagram screening is introduced for the self-assembly of miktoarm star polymers with different arm numbers for the insoluble part. Agreeing with theory, all conventional micellar morphologies (spherical star-like micelles, cylindrical micelles and vesicles) can be accessed by adjusting the average arm number when blending miktoarm stars with diblock copolymers (at constant arm/block lengths). Additionally, a rare clustered vesicle phase is detected.
View Article and Find Full Text PDFStimuli-sensitive poly(N-isopropylacrylamide) (PNIPAM) microgels have various prospective practical applications and uses in fundamental research. In this work, we use single particle tracking of fluorescently labeled PNIPAM microgels as a showcase for tuning microgel size by a rapid non-stirred precipitation polymerization procedure. This approach is well suited for prototyping new reaction compositions and conditions or for applications that do not require large amounts of product.
View Article and Find Full Text PDF