Publications by authors named "Monduzzi M"

Article Synopsis
  • The study investigates how different pH buffers impact the thermal stability of DNA, specifically comparing their effects using calf thymus DNA and UV-vis spectroscopy.
  • The experiment focuses on four types of buffers (phosphate, Tris, citrate, and cacodylate) at a constant pH of 7.4 and varying concentrations from 1-600 mM.
  • Results show that with increasing buffer concentration, DNA stability improves, with the stabilizing effect being ranked as Tris being the most effective, followed by cacodylate, phosphate, and citrate.
View Article and Find Full Text PDF

Biointerfaces are significantly affected by electrolytes according to the Hofmeister series. This work reports a systematic investigation on the effect of different metal chlorides, sodium and potassium bromides, iodides and thiocyanates, on the ESI/MS spectra of bovine serum albumin (BSA) in aqueous solution at pH = 2.7.

View Article and Find Full Text PDF

We examine Hofmeister specific ion effects of electrolytes added to protein solution under conditions minimizing electrostatic attraction between cations and positively charged protein. Hemoglobin (Hb) in aqueous solution at the denaturing pH = 2.7 is investigated in the presence of several metal chlorides, along with sodium and potassium bromides, iodides and thiocyanates, using electrospray ionization mass spectrometry (ESI-MS).

View Article and Find Full Text PDF
Article Synopsis
  • Mesoporous silica nanoparticles (MSN) were modified with triethylenetetramine (MSN-TETA) to enhance their ability to adsorb the antimicrobial drug sulphamethizole (SMZ), leading to higher drug loading compared to unmodified MSN.
  • The drug loading was analyzed using various methods, with results indicating that MSN-TETA could hold more SMZ despite having a smaller surface area, and the adsorption kinetics followed a pseudo-second-order model fitting the Langmuir isotherm.
  • Release studies revealed that SMZ was released more rapidly from bare MSN while MSN-TETA showed a slower release due to stronger intermolecular interactions, highlighting the importance of these interactions in drug delivery systems.
View Article and Find Full Text PDF

BSA and lysozyme molecular motion at pH 7.15 is buffer-specific. Adsorption of buffer ions on protein surfaces modulates the protein surface charge and thus protein-protein interactions.

View Article and Find Full Text PDF

The purpose of this work was the assembly of multicomponent nano-bioconjugates based on mesoporous silica nanoparticles (MSNs), proteins (bovine serum albumin, BSA, or lysozyme, LYZ), and gold nanoparticles (GNPs). These nano-bioconjugates may find applications in nanomedicine as theranostic devices. Indeed, MSNs can act as drug carriers, proteins stabilize MSNs within the bloodstream, or may have therapeutic or targeting functions.

View Article and Find Full Text PDF

Ordered mesoporous silica (OMS) is a very interesting nanostructured material for the design and engineering of new target and controlled drug-delivery systems. Particularly relevant is the interaction between OMS and proteins. Large pores (6–9 nm) micrometric particles can be used for the realization of a drug depot system where therapeutic proteins are adsorbed either inside the mesopores or on the external surface.

View Article and Find Full Text PDF

Lipid based formulations, endowed of long term stability as a result of the formation of lamellar liquid crystals, were prepared using the natural lipids lecithin and glycerol trioleate in water, and characterized using optical microscopy, SAXRD and NMR. The formulations, designed as possible carriers for lysozyme and caffeine, were evaluated for structural features and stability after the loading of the guest molecules. Release experiments were performed at 37 °C using the PBS medium.

View Article and Find Full Text PDF

A dynamic, rheological, and structural characterization of aqueous gel-like systems containing hydroxypropyl guar gum (HPG), borax and glycerol is presented in this paper. The role of glycerol, which is introduced as a plasticizer in the formulation, is investigated by means of B NMR and H NMR PGSTE measurements in order to clarify its contribution to the gel network formation and its interaction with borax, with whom it forms a complex. The effect of gels components on the rheological behaviour and on the activation energy related to the relaxation process of the system was assessed by means of rheology.

View Article and Find Full Text PDF

Mesoporous silica nanoparticles (MSNs) were functionalized with amino groups (MSN-NH) and then with hyaluronic acid, a biocompatible biopolymer which can be recognized by CD44 receptors in tumor cells, to obtain a targeting drug delivery system. To this purpose, three hyaluronic acid samples differing for the molecular weight, namely HA (8-15 kDa), HA (30-50 kDa) and HA (90-130 kDa), were used. The MSN-HA, MSN-HA, and MSN-HA materials were characterized through zeta potential and dynamic light scattering measurements at pH = 7.

View Article and Find Full Text PDF

The phase behavior in the oleic acid/sodium oleate/normal saline (0.15M NaCl aqueous solution) system has been determined. For this purpose visual inspection of samples between crossed polarizers, and Small Angle X-ray diffraction was used to identify the various phases and their unit cell dimensions.

View Article and Find Full Text PDF

Preclinical Research Δ -Tetrahydrocannabinol (THC) is a hydrophobic compound that has a potent antinociceptive effect in animals after intrathecal (IT) or intracerebroventricular (ICV) administration. The lack of a suitable solvent precludes its IT administration in humans. 2-Hydroxypropyl-β-cyclodextrin (HPβCD) increases the water solubility of hydrophobic drugs and is approved for IT administration in humans.

View Article and Find Full Text PDF

In this work the adsorption and the release of ampicillin - a β-lactam penicillin-like antibiotic - from MCM-41, SBA-15, and (amino functionalized) SBA-15-NH ordered mesoporous silica (OMS) materials were investigated. The silica matrices differ for their pore size (SBA-15 vs. MCM-41) mainly, and also for surface charge (SBA-15 and MCM-41, vs.

View Article and Find Full Text PDF

Herein we provided the first proof of principle for in vivo fluorescence optical imaging application using monoolein-based cubosomes in a healthy mouse animal model. This formulation, administered at a non-cytotoxic concentration, was capable of providing both exogenous contrast for NIR fluorescence imaging with very high efficiency and chemospecific information upon lifetime analysis. Time-resolved measurements of fluorescence after the intravenous injection of cubosomes revealed that the dye rapidly accumulated mainly in the liver, while lifetimes profiles obtained in vivo allowed for discriminating between free dye or dye embedded within the cubosome nanostructure after injection.

View Article and Find Full Text PDF

Mesoporous silica nanoparticles (MSNs), based on the MCM-41 matrix, were functionalized with amino groups, and then with hyaluronic acid (HA) or chitosan (CHIT) to fabricate bioactive conjugates. The role of the functional groups toward cytotoxicity and cellular uptake was investigated using 3T3 mouse fibroblast cells. A very high biocompatibility of MSN-NH, MSN-HA and MSN-CHIT matrices was assessed through the MTS biological assay and Coulter counter evaluation.

View Article and Find Full Text PDF

Here, we describe a novel monoolein-based cubosome formulation engineered for possible theranostic applications in oncology. The Docetaxel-loaded nanoparticles were stabilized in water by a mixture of commercial Pluronic (poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymer) F108 (PF108) and rhodamine- and folate-conjugated PF108 so that the nanoparticles possess targeting, therapeutic, and imaging properties. Nanoparticles were investigated by DLS, cryo-TEM, and SAXS to confirm their structural features.

View Article and Find Full Text PDF

Ordered mesoporous silica (OMS) materials are receiving great attention as possible carriers for valuable but unstable drugs as, for example, therapeutic proteins. A key issue is to prove that the therapeutic protein is effectively able to penetrate the pores of OMS during the adsorption step. Here, we immobilized an antibody fragment [F(ab')GAMIgG] conjugated with ultrasmall gold nanoparticles (GNPs) onto amino-functionalized SBA-15 (SBA-NH2) mesoporous silica.

View Article and Find Full Text PDF

This short review highlights the effect of electrolytes on the performance of proteins-mesoporous silica conjugates which can open interesting perspectives in biotechnological fields, particularly nanomedicine and biocatalysis. Indeed therapeutic proteins and peptides represent a challenging innovation for several kinds of diseases, but since their self-life in biological fluids is very short, they need a stealth protective carrier. Similarly, enzymes need a solid support to improve thermal stability and to allow for recycling.

View Article and Find Full Text PDF

We present here an innovative, fluorescent, monoolein-based cubosome dispersion. Rather than embedded within the monoolein palisade, the fluorescent imaging agent, namely dansyl, was conjugated to the terminal ethylene oxide moieties of the block copolymer Pluronic F108. We discuss the physicochemical and photophysical properties of this fluorescent Pluronic and of a cubosome formulation stabilized by a mixture of dansyl-conjugated and non-conjugated Pluronic, also including an anticancer drug (quercetin).

View Article and Find Full Text PDF

Specific ion effects on the Brownian molecular motion of BSA protein under physiological conditions are investigated. New useful insights into Hofmeister phenomena related to electrolyte-protein interactions are presented.

View Article and Find Full Text PDF

Silica-based ordered mesoporous materials are very attractive matrices to prepare smart depot systems for several kinds of therapeutic agents. This work focuses on the well-known SBA-15 mesoporous silica and lysozyme, an antimicrobial protein. In order to improve the bioadhesion properties of SBA-15 particles, the effect of hyaluronic acid (HA) functionalization on lysozyme adsorption was investigated.

View Article and Find Full Text PDF

The aim of this study was to elucidate the influence of the edge activator structure on the properties of novel deformable liposomes, Penetration Enhancer-containing Vesicles (PEVs), capable of delivering drugs to the skin. The PEVs were prepared by testing five different amphiphilic penetration enhancers as edge activators in the bilayer composition, together with soy phosphatidylcholine and oleic acid. The penetration enhancers contained the same lipophilic tail (one or more C8-C10 carbon chains) and different hydrophilic heads.

View Article and Find Full Text PDF

This work was devoted to the development of a new type of lipid-based (cubosome) theranostic nanoparticle able to simultaneously host camptothecin, a potent anticancer drug, and a squarain-based NIR-emitting fluorescent probe. Furthermore, to confer targeting abilities on these nanoparticles, they were dispersed using mixtures of Pluronic F108 and folate-conjugated Pluronic F108 in appropriate ratios. The physicochemical characterization, performed via SAXS, DLS, and cryo-TEM techniques, proved that aqueous dispersions of such cubosomes can be effectively prepared, while the photophysical characterization demonstrated that these nanoparticles may be used for in vivo imaging purposes.

View Article and Find Full Text PDF

Turbidity titrations are used to study the ion specific aggregation of hemoglobin (Hb) below and physiological salt concentration in the pH range 4.5-9.5.

View Article and Find Full Text PDF

This review highlights the key role of NMR techniques in demonstrating the molecular aspects of the self-assembly of surfactant molecules that nowadays constitute the basic knowledge which modern nanoscience relies on. The aim is to provide a tutorial overview. The story of a rigorous scientific approach to understand self-assembly in surfactant systems and biological membranes starts in the early seventies when the progresses of SAXRD and NMR technological facilities allowed to demonstrate the existence of ordered soft matter, and the validity of Tanford approach concerning self-assembly at a molecular level.

View Article and Find Full Text PDF