Distributed ledger technologies have opened up a wealth of fine-grained transaction data from cryptocurrencies like Bitcoin and Ethereum. This allows research into problems like anomaly detection, anti-money laundering, pattern mining and activity clustering (where data from traditional currencies is rarely available). The formalism of temporal networks offers a natural way of representing this data and offers access to a wealth of metrics and models.
View Article and Find Full Text PDFDiscriminating between competing explanatory models as to which is more likely responsible for the growth of a network is a problem of fundamental importance for network science. The rules governing this growth are attributed to mechanisms such as preferential attachment and triangle closure, with a wealth of explanatory models based on these. These models are deliberately simple, commonly with the network growing according to a constant mechanism for its lifetime, to allow for analytical results.
View Article and Find Full Text PDFAlternative paths in a network play an important role in its functionality as they can maintain the information flow under node/link failures. In this paper we explore the navigation of a network taking into account the alternative paths and in particular how can we describe this navigation in a concise way. Our approach is to simplify the network by aggregating into groups the nodes that do not contribute to alternative paths.
View Article and Find Full Text PDFMany of the structural characteristics of a network depend on the connectivity with and within the hubs. These dependencies can be related to the degree of a node and the number of links that a node shares with nodes of higher degree. In here we revise and present new results showing how to construct network ensembles which give a good approximation to the degree-degree correlations, and hence to the projections of this correlation like the assortativity coefficient or the average neighbours degree.
View Article and Find Full Text PDFDroplet volume and temperature affect contact angle significantly. Phase change heat transfer processes of nanofluids - suspensions containing nanometre-sized particles - can only be modelled properly by understanding these effects. The approach proposed here considers the limiting contact angle of a droplet asymptotically approaching zero-volume as a thermophysical property to characterise nanofluids positioned on a certain substrate under a certain atmosphere.
View Article and Find Full Text PDFSolar energy has become an important renewable energy source for reducing the use of fossil fuels and to mitigate global warming, for which solar collectors constitute a technology that is to be promoted. The use of nanofluids can increase the efficiency of solar into thermal energy conversion in solar collectors. Experimental values for the specific heat, thermal conductivity and viscosity of alumina/water nanofluids are needed to evaluate the influence of the solid content (from 0.
View Article and Find Full Text PDFNanoparticles have been used in thermal applications to increase the specific heat of the molten salts used in Concentrated Solar Power plants for thermal energy storage. Although several mechanisms for abnormal enhancement have been proposed, they are still being investigated and more research is necessary. However, this nanoparticle-salt interaction can also be found in chemical applications in which nanoparticles have proved suitable to be used as an adsorbent for nitrate removal given their high specific surface, reactivity and ionic exchange capacity.
View Article and Find Full Text PDFMultiplex networks describe a large number of complex social, biological and transportation networks where a set of nodes is connected by links of different nature and connotation. Here we uncover the rich community structure of multiplex networks by associating a community to each multilink where the multilinks characterize the connections existing between any two nodes of the multiplex network. Our community detection method reveals the rich interplay between the mesoscale structure of the multiplex networks and their multiplexity.
View Article and Find Full Text PDFNanofluids using nanoencapsulated Phase Change Materials (nePCM) allow increments in both the thermal conductivity and heat capacity of the base fluid. Incremented heat capacity is produced by the melting enthalpy of the nanoparticles core. In this work two important advances in this nanofluid type are proposed and experimentally tested.
View Article and Find Full Text PDFSolar energy is available over wide geographical areas and its harnessing is becoming an essential tool to satisfy the ever-increasing demand for energy with minimal environmental impact. Solar nanofluids are a novel solar receiver concept for efficient harvesting of solar radiation based on volumetric absorption of directly irradiated nanoparticles in a heat transfer fluid. Herein, the fabrication of a solar nanofluid by pulsed laser ablation in liquids was explored.
View Article and Find Full Text PDFJ Nanobiotechnology
November 2015
Background: The safe use in biomedicine of semiconductor nanoparticles, also known as quantum dots (QDs), requires a detailed understanding of the biocompatibility and toxicity of QDs in human beings. The biological characteristics and physicochemical properties of QDs entail new challenges regarding the management of potential adverse health effects following exposure. At certain concentrations, the synthesis of semiconductor nanoparticles of CdS using dextrin as capping agent, at certain concentration, to reduce their toxicity and improves their biocompatibility.
View Article and Find Full Text PDFSeeking research funding is an essential part of academic life. Funded projects are primarily collaborative in nature through internal and external partnerships, but what role does funding play in the formulation of these partnerships? Here, by examining over 43,000 scientific projects funded over the past three decades by one of the major government research agencies in the world, we characterize how the funding landscape has changed and its impacts on the underlying collaboration networks across different scales. We observed rising inequality in the distribution of funding and that its effect was most noticeable at the institutional level--the leading universities diversified their collaborations and increasingly became the knowledge brokers in the collaboration network.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
August 2015
We study an open-boundary version of the on-off zero-range process introduced in Hirschberg et al. [Phys. Rev.
View Article and Find Full Text PDFA core comprises of a group of central and densely connected nodes which governs the overall behaviour of a network. It is recognised as one of the key meso-scale structures in complex networks. Profiling this meso-scale structure currently relies on a limited number of methods which are often complex and parameter dependent or require a null model.
View Article and Find Full Text PDFUnlabelled: Thermal energy storage (TES) is extremely important in concentrated solar power (CSP) plants since it represents the main difference and advantage of CSP plants with respect to other renewable energy sources such as wind, photovoltaic, etc. CSP represents a low-carbon emission renewable source of energy, and TES allows CSP plants to have energy availability and dispatchability using available industrial technologies. Molten salts are used in CSP plants as a TES material because of their high operational temperature and stability of up to 500°C.
View Article and Find Full Text PDFOne of the most important challenges in network science is to quantify the information encoded in complex network structures. Disentangling randomness from organizational principles is even more demanding when networks have a multiplex nature. Multiplex networks are multilayer systems of [Formula: see text] nodes that can be linked in multiple interacting and co-evolving layers.
View Article and Find Full Text PDFProtozoan parasites have been one of the most significant public health problems for centuries and several human infections caused by them have massive global impact. Most of the current drugs used to treat these illnesses have been used for decades and have many limitations such as the emergence of drug resistance, severe side-effects, low-to-medium drug efficacy, administration routes, cost, etc. These drugs have been largely neglected as models for drug development because they are majorly used in countries with limited resources and as a consequence with scarce marketing possibilities.
View Article and Find Full Text PDFMany complex systems can be described as multiplex networks in which the same nodes can interact with one another in different layers, thus forming a set of interacting and co-evolving networks. Examples of such multiplex systems are social networks where people are involved in different types of relationships and interact through various forms of communication media. The ranking of nodes in multiplex networks is one of the most pressing and challenging tasks that research on complex networks is currently facing.
View Article and Find Full Text PDFThe role of platelets in coagulation and the haemostatic process was initially suggested two centuries ago, and under appropriate physiological stimuli, these undergo abrupt morphological changes, attaching and spreading on damaged endothelium, preventing bleeding. During the adhesion process, platelet cytoskeleton reorganizes generating compartments in which actin filaments, microtubules, and associated proteins are arranged in characteristic patterns mediating crucial events, such as centralization of their organelles, secretion of granule contents, aggregation with one another to form a haemostatic plug, and retraction of these aggregates. However, the role of Intermediate filaments during the platelet adhesion process has not been explored.
View Article and Find Full Text PDFWe recently characterized a nuclear import pathway for β-dystroglycan; however, its nuclear role remains unknown. In this study, we demonstrate for the first time, the interaction of β-dystroglycan with distinct proteins from different nuclear compartments, including the nuclear envelope (NE) (emerin and lamins A/C and B1), splicing speckles (SC35), Cajal bodies (p80-coilin), and nucleoli (Nopp140). Electron microscopy analysis revealed that β-dystroglycan localized in the inner nuclear membrane, nucleoplasm, and nucleoli.
View Article and Find Full Text PDFToxoplasma gondii proliferates and organizes within a parasitophorous vacuole in rosettes around a residual body and is surrounded by a membranous nanotubular network whose function remains unclear. Here, we characterized structure and function of the residual body in intracellular tachyzoites of the RH strain. Our data showed the residual body as a body limited by a membrane formed during proliferation of tachyzoites probably through the secretion of components and a pinching event of the membrane at the posterior end.
View Article and Find Full Text PDFUpon activation with physiological stimuli, human platelets undergo morphological changes, centralizing their organelles and secreting effector molecules at the site of vascular injury. Previous studies have indicated that the actin filaments and microtubules of suspension-activated platelets play a critical role in granule movement and exocytosis; however, the participation of these cytoskeleton elements in adhered platelets remains unexplored. alpha- and beta-dystrobrevin members of the dystrophin-associated protein complex in muscle and non-muscle cells have been described as motor protein receptors that might participate in the transport of cellular components in neurons.
View Article and Find Full Text PDFLead intoxication is a worldwide health problem which frequently affects the kidney. In this work, we studied the effects of chronic lead intoxication (500 ppm of Pb in drinking water during seven months) on the structure, function and biochemical properties of rat proximal tubule cells. Lead-exposed animals showed increased lead concentration in kidney, reduction of calcium and amino acids uptake, oxidative damage and glucosuria, proteinuria, hematuria and reduced urinary pH.
View Article and Find Full Text PDFThe presence in Entamoeba histolytica of a fibronectin (FN) receptor, which is antigenically related to beta1 integrin-like molecules and shows 99% homology with the intermediate subunit-2 of the Gal/GalNAc-specific lectin has been described. The E. histolytica genome has been sequenced, and its analysis shows no integrin sequences.
View Article and Find Full Text PDFCell invasion by the intracellular parasite Toxoplasma gondii occurs through an active process that involves dynamic events, such as gliding motility and conoid extrusion, followed by a sequential secretion from specialized secretory organelles. Increase of intracellular Ca(2+) by ionophores induces conoid extrusion, although in an irreversible way, thus limiting the characterization of the regulatory pathways. In this report we studied the effect of different activating conoid conditions to characterize the regulatory mechanisms involved.
View Article and Find Full Text PDF