In this work, we propose a novel approach called Operational Support Estimator Networks (OSENs) for the support estimation task. Support Estimation (SE) is defined as finding the locations of non-zero elements in sparse signals. By its very nature, the mapping between the measurement and sparse signal is a non-linear operation.
View Article and Find Full Text PDFThe efforts in compressive sensing (CS) literature can be divided into two groups: finding a measurement matrix that preserves the compressed information at its maximum level, and finding a robust reconstruction algorithm. In the traditional CS setup, the measurement matrices are selected as random matrices, and optimization-based iterative solutions are used to recover the signals. Using random matrices when handling large or multi-dimensional signals is cumbersome especially when it comes to iterative optimizations.
View Article and Find Full Text PDFWith over 17 million annual deaths, cardiovascular diseases (CVDs) dominate the cause of death statistics. CVDs can deteriorate the quality of life drastically and even cause sudden death, all the while inducing massive healthcare costs. This work studied state-of-the-art deep learning techniques to predict increased risk of death in CVD patients, building on the electronic health records (EHR) of over 23,000 cardiac patients.
View Article and Find Full Text PDFIn this study, we propose a novel approach to predict the distances of the detected objects in an observed scene. The proposed approach modifies the recently proposed Convolutional Support Estimator Networks (CSENs). CSENs are designed to compute a direct mapping for the Support Estimation (SE) task in a representation-based classification problem.
View Article and Find Full Text PDFIEEE Trans Biomed Eng
January 2023
Objective: Global (inter-patient) ECG classification for arrhythmia detection over Electrocardiogram (ECG) signal is a challenging task for both humans and machines. Automating this process with utmost accuracy is, therefore, highly desirable due to the advent of wearable ECG sensors. However, even with numerous deep learning approaches proposed recently, there is still a notable gap in the performance of global and patient-specific ECG classification performance.
View Article and Find Full Text PDFObjective: ECG recordings often suffer from a set of artifacts with varying types, severities, and durations, and this makes an accurate diagnosis by machines or medical doctors difficult and unreliable. Numerous studies have proposed ECG denoising; however, they naturally fail to restore the actual ECG signal corrupted with such artifacts due to their simple and naive noise model. In this pilot study, we propose a novel approach for blind ECG restoration using cycle-consistent generative adversarial networks (Cycle-GANs) where the quality of the signal can be improved to a clinical level ECG regardless of the type and severity of the artifacts corrupting the signal.
View Article and Find Full Text PDFIEEE Trans Neural Netw Learn Syst
November 2023
Although numerous R-peak detectors have been proposed in the literature, their robustness and performance levels may significantly deteriorate in low-quality and noisy signals acquired from mobile electrocardiogram (ECG) sensors, such as Holter monitors. Recently, this issue has been addressed by deep 1-D convolutional neural networks (CNNs) that have achieved state-of-the-art performance levels in Holter monitors; however, they pose a high complexity level that requires special parallelized hardware setup for real-time processing. On the other hand, their performance deteriorates when a compact network configuration is used instead.
View Article and Find Full Text PDFSocial distancing is crucial to restrain the spread of diseases such as COVID-19, but complete adherence to safety guidelines is not guaranteed. Monitoring social distancing through mass surveillance is paramount to develop appropriate mitigation plans and exit strategies. Nevertheless, it is a labor-intensive task that is prone to human error and tainted with plausible breaches of privacy.
View Article and Find Full Text PDFObjective: Despitethe proliferation of numerous deep learning methods proposed for generic ECG classification and arrhythmia detection, compact systems with the real-time ability and high accuracy for classifying patient-specific ECG are still few. Particularly, the scarcity of patient-specific data poses an ultimate challenge to any classifier. Recently, compact 1D Convolutional Neural Networks (CNNs) have achieved the state-of-the-art performance level for the accurate classification of ventricular and supraventricular ectopic beats.
View Article and Find Full Text PDFIn this paper, a novel data-driven method for weight initialization of Multilayer Perceptrons and Convolutional Neural Networks based on discriminant learning is proposed. The approach relaxes some of the limitations of competing data-driven methods, including unimodality assumptions, limitations on the architectures related to limited maximal dimensionalities of the corresponding projection spaces, as well as limitations related to high computational requirements due to the need of eigendecomposition on high-dimensional data. We also consider assumptions of the method on the data and propose a way to account for them in a form of a new normalization layer.
View Article and Find Full Text PDFIEEE Trans Neural Netw Learn Syst
January 2023
Support estimation (SE) of a sparse signal refers to finding the location indices of the nonzero elements in a sparse representation. Most of the traditional approaches dealing with SE problems are iterative algorithms based on greedy methods or optimization techniques. Indeed, a vast majority of them use sparse signal recovery (SR) techniques to obtain support sets instead of directly mapping the nonzero locations from denser measurements (e.
View Article and Find Full Text PDFObjective: Noise and low quality of ECG signals acquired from Holter or wearable devices deteriorate the accuracy and robustness of R-peak detection algorithms. This paper presents a generic and robust system for R-peak detection in Holter ECG signals. While many proposed algorithms have successfully addressed the problem of ECG R-peak detection, there is still a notable gap in the performance of these detectors on such low-quality ECG records.
View Article and Find Full Text PDFLinear discriminant analysis (LDA) is a classical statistical machine-learning method, which aims to find a linear data transformation increasing class discrimination in an optimal discriminant subspace. Traditional LDA sets assumptions related to the Gaussian class distributions and single-label data annotations. In this article, we propose a new variant of LDA to be used in multilabel classification tasks for dimensionality reduction on original data to enhance the subsequent performance of any multilabel classifier.
View Article and Find Full Text PDFIEEE Trans Neural Netw Learn Syst
May 2021
Coronavirus disease (COVID-19) has been the main agenda of the whole world ever since it came into sight. X-ray imaging is a common and easily accessible tool that has great potential for COVID-19 diagnosis and prognosis. Deep learning techniques can generally provide state-of-the-art performance in many classification tasks when trained properly over large data sets.
View Article and Find Full Text PDFOperational Neural Networks (ONNs) have recently been proposed to address the well-known limitations and drawbacks of conventional Convolutional Neural Networks (CNNs) such as network homogeneity with the sole linear neuron model. ONNs are heterogeneous networks with a generalized neuron model. However the operator search method in ONNs is not only computationally demanding, but the network heterogeneity is also limited since the same set of operators will then be used for all neurons in each layer.
View Article and Find Full Text PDFComputer-aided diagnosis has become a necessity for accurate and immediate coronavirus disease 2019 (COVID-19) detection to aid treatment and prevent the spread of the virus. Numerous studies have proposed to use Deep Learning techniques for COVID-19 diagnosis. However, they have used very limited chest X-ray (CXR) image repositories for evaluation with a small number, a few hundreds, of COVID-19 samples.
View Article and Find Full Text PDFCoronavirus disease 2019 (COVID-19) has rapidly become a global health concern after its first known detection in December 2019. As a result, accurate and reliable advance warning system for the early diagnosis of COVID-19 has now become a priority. The detection of COVID-19 in early stages is not a straightforward task from chest X-ray images according to expert medical doctors because the traces of the infection are visible only when the disease has progressed to a moderate or severe stage.
View Article and Find Full Text PDFDiscriminative learning based on convolutional neural networks (CNNs) aims to perform image restoration by learning from training examples of noisy-clean image pairs. It has become the go-to methodology for tackling image restoration and has outperformed the traditional non-local class of methods. However, the top-performing networks are generally composed of many convolutional layers and hundreds of neurons, with trainable parameters in excess of several million.
View Article and Find Full Text PDFStock price prediction is a challenging task, in which machine learning methods have recently been successfully used. In this paper, we extract over 270 hand-crafted features (factors) inspired by technical indicators and quantitative analysis and test their validity on short-term mid-price movement prediction for Nordic TotalView-ITCH stocks. The suggested feature list represents one of the most extensive studies in the field of financial feature engineering.
View Article and Find Full Text PDFCompressive learning (CL) is an emerging topic that combines signal acquisition via compressive sensing (CS) and machine learning to perform inference tasks directly on a small number of measurements. Many data modalities naturally have a multidimensional or tensorial format, with each dimension or tensor mode representing different features such as the spatial and temporal information in video sequences or the spatial and spectral information in hyperspectral images. However, in existing CL frameworks, the CS component utilizes either random or learned linear projection on the vectorized signal to perform signal acquisition, thus discarding the multidimensional structure of the signals.
View Article and Find Full Text PDFIEEE Trans Neural Netw Learn Syst
February 2021
Weight imprinting (WI) was recently introduced as a way to perform gradient descent-free few-shot learning. Due to this, WI was almost immediately adapted for performing few-shot learning on embedded neural network accelerators that do not support back-propagation, e.g.
View Article and Find Full Text PDFIEEE Trans Neural Netw Learn Syst
September 2020
Deep learning (DL) models can be used to tackle time series analysis tasks with great success. However, the performance of DL models can degenerate rapidly if the data are not appropriately normalized. This issue is even more apparent when DL is used for financial time series forecasting tasks, where the nonstationary and multimodal nature of the data pose significant challenges and severely affect the performance of DL models.
View Article and Find Full Text PDFIEEE Trans Neural Netw Learn Syst
March 2020
The traditional multilayer perceptron (MLP) using a McCulloch-Pitts neuron model is inherently limited to a set of neuronal activities, i.e., linear weighted sum followed by nonlinear thresholding step.
View Article and Find Full Text PDFIEEE J Biomed Health Inform
February 2020
Nonlinear dynamics has recently been extensively used to study epilepsy due to the complex nature of the neuronal systems. This study presents a novel method that characterizes the dynamic behavior of pediatric seizure events and introduces a systematic approach to locate the nullclines on the phase space when the governing differential equations are unknown. Nullclines represent the locus of points in the solution space where the components of the velocity vectors are zero.
View Article and Find Full Text PDFIEEE Trans Neural Netw Learn Syst
May 2019
Financial time-series forecasting has long been a challenging problem because of the inherently noisy and stochastic nature of the market. In the high-frequency trading, forecasting for trading purposes is even a more challenging task, since an automated inference system is required to be both accurate and fast. In this paper, we propose a neural network layer architecture that incorporates the idea of bilinear projection as well as an attention mechanism that enables the layer to detect and focus on crucial temporal information.
View Article and Find Full Text PDF