Publications by authors named "Monazza Shahab"

Cisplatin, a widely used anti-cancer drug, induces apoptosis in cochlear hair cells. In previous studies, cisplatin-induced nitration and degradation of proteins such as LMO4 disrupted their anti-apoptotic signaling. Cotreatment with SRI110, a peroxynitrite decomposition catalyst, attenuated cisplatin-induced ototoxicity in rodents.

View Article and Find Full Text PDF

The disruption of ribbon synapses in the cochlea impairs the transmission of auditory signals from the cochlear sensory receptor cells to the auditory cortex. Although cisplatin-induced loss of ribbon synapses is well-documented, and studies have reported nitration of cochlear proteins after cisplatin treatment, yet the underlying mechanism of cochlear synaptopathy is not fully understood. This study tests the hypothesis that cisplatin treatment alters the abundance of cochlear synaptosomal proteins, and selective targeting of nitrative stress prevents the associated synaptic dysfunction.

View Article and Find Full Text PDF

Nitrative stress is increasingly recognized as a critical mediator of apoptotic cell death in many pathological conditions. The accumulation of nitric oxide along with superoxide radicals leads to the generation of peroxynitrite that can eventually result in the nitration of susceptible proteins. Nitrotyrosine is widely used as a biomarker of nitrative stress and indicates oxidative damage to proteins.

View Article and Find Full Text PDF

Cisplatin, a potent chemotherapeutic drug, induces ototoxicity, which limits its clinical utility. Cisplatin-induced oxidative stress plays a causal role in cochlear apoptosis while the consequent nitrative stress leads to the nitration of LIM domain only 4 (LMO4), a transcriptional regulator, and decreases its cochlear expression levels. Here, we show a direct link between cochlear LMO4 and cisplatin-induced hearing loss by employing a Lmo4 conditional knockout mouse model (Lmo4; Gfi1).

View Article and Find Full Text PDF

Generation of reactive oxygen species, a critical factor in cisplatin-induced ototoxicity, leads to the formation of peroxynitrite, which in turn results in the nitration of susceptible proteins. Previous studies indicated that LMO4, a transcriptional regulator, is the most abundantly nitrated cochlear protein after cisplatin treatment and that LMO4 nitration facilitates ototoxicity in rodents. However, the role of this mechanism in regulating cisplatin-induced hair cell loss in non-mammalian models is unknown.

View Article and Find Full Text PDF

JAK/STAT pathway is one among the several oxidative stress-responsive signaling pathways that play a critical role in facilitating cisplatin-induced ototoxicity. Cisplatin treatment decreases the levels of cochlear LMO4, which acts as a scaffold for IL6-GP130 protein complex. Cisplatin-induced nitration and degradation of LMO4 could destabilize this protein complex, which in turn could compromise the downstream STAT3-mediated cellular defense mechanism.

View Article and Find Full Text PDF