Biodegradable drug-eluting stents (DESs) are gaining importance owing to their attractive features, such as complete drug release to the target site. Magnesium (Mg) alloys are promising materials for future biodegradable DESs. However, there are few explorations using biodegradable Mg for cardiovascular stent application.
View Article and Find Full Text PDFPurpose: Development of multifunctional advanced stent implants (metal/polymer composite)-drug-eluting stents with superior material and optical properties is still a challenge. In this research work, multifunctional metal-polymer composite drug-eluting substrates (DES) for stent application were developed by using commercially pure titanium (cpTi) and polyethylene glycol (PEG).
Methods: Surface modifications on titanium substrates were carried out by sodium hydroxide under various concentrations; 5M (6 and 24 h) and 10M (6 and 24 h).
The present work describes the inhibition studies of free as well as immobilized urease by different heavy metals. Porous silicon (PS) films prepared by electrochemical etching were used for urease immobilization by physical adsorption. The enzyme was subjected to varying concentrations of Cr, Cr, Cu, Fe, Cd and Ni and analyzed for the variation in the activity.
View Article and Find Full Text PDF