Publications by authors named "Mona Navaei Nigjeh"

Analyzing the chemical composition of different kinds of acrylic cement is necessary to understand their properties and suitability for curing bone defects. Conducting various chemical tests can give valuable insight into the composition, viscosity, and performance characteristics of each kind of cement, Therefore, our study aimed to find safety standards and the effectiveness of these products for medical applications. The polymeric characterization was determined by Nuclear Magnetic Resonance (H-NMR) spectroscopy and Fourier-transform infrared spectroscopy (FTIR).

View Article and Find Full Text PDF

The complexity in structure and function of the nervous system, as well as its slow rate of regeneration, makes it more difficult to treat it compared to other tissues. Neural tissue engineering aims to create an appropriate environment for nerve cell proliferation and differentiation. Fibrous scaffolds with suitable morphology and topography and better mimicry of the extracellular matrix have been promising for the alignment and migration of neural cells.

View Article and Find Full Text PDF

Nowadays, electrospun fibrous mats are used as drug delivery systems for loading of potential drugs in order to kill cancer cells. In the study, a skin patch for treating melanoma cancer after surgery was made using polycaprolactone and polymetformin microfibers that were loaded with doxycycline (PolyMet/PCL@DOX), an anti-cancer stem cell agent. The morphology, structure, mechanical characteristics, swelling, and porosity of the electrospun microfibers were examined.

View Article and Find Full Text PDF

Chlorpyrifos (CPF) is a widely used pesticide that can impair body organs. Nonetheless, metformin is known for its protective role against dysfunction at cellular and molecular levels led by inflammatory and oxidative stress. This study aimed to investigate the modulatory impacts of metformin on CPF-induced heart and lung damage.

View Article and Find Full Text PDF

Curcumin, a natural compound with promising anti-cancerous features, suffers from a number of shortcomings such as low chemical stability, bioavailability, and solubility, which impedes its application as an alternative for conventional cancer therapy. In this study, curcumin comprising FeO/Chitosan/CQDs was fabricated through double emulsion method (W/O/W) for the first time to exploit its anticancer features while alleviating its limitation, making this nanocomposite promising in targeted drug delivery. Chitosan, a hydrophilic biopolymer, has incorporated to constitute an adhesive pH-sensitive matrix that can trap the hydrophobic drug resulting in controlled drug release in cancerous environment.

View Article and Find Full Text PDF

Islet transplantation offers improved glycemic control in individuals with type 1 diabetes mellitus. However, in vitro islet culture is associated with islet apoptosis and eventually will lose their functionality prior to transplantation. In this study, we examined the effects of mesenchymal stem cells (MSCs) secretome preconditioned with diazoxide (DZ) and trimetazidine (TMZ) on rat islet cells during pre-transplant culture.

View Article and Find Full Text PDF

Constructing a system to carry medicine for more effective remedy of cancer has been a leading challenge, as the number of cancer cases continues to increase. In this present research, a curcumin-loaded chitosan/halloysite/carbon nanotube nanomixture was fabricated by means of water/oil/water emulsification method. The drug loading efficiency (DL) and entrapment efficiency (EE), as a result, reached 42 % and 88 %, respectively and FTIR and XRD analysis confirmed the bonding between the drug and nanocarrier.

View Article and Find Full Text PDF

5-Fluorouracil (5-FU) is a cytotoxic drug with a low half-life. These features can cause some problems such as burst drug release and numerous side effects. In the present study, a pH-sensitive nanocomposite of polyvinylpyrrolidone (PVP)/carboxymethyl cellulose (CMC)/γ-alumina developed by using water in oil in water (W/O/W) double emulsion method.

View Article and Find Full Text PDF

Silk fibroin (SF), extracted from Bombyx mori, has unique physicochemical properties to achieve an efficient wound dressing. In this study, reduced graphene oxide (RGO)/ZnO NPs/silk fibroin nanocomposite was made, and an innovative nanofiber of SF/polyvinyl alcohol (PVA)/RGO/ZnO NPs was ready with the electrospinning technique and successfully characterized. The results of MIC and OD analyses were used to investigate the synthesized materials' antibacterial effects and displayed that the synthesized materials could inhibit growth against Staphylococcus aureus and Escherichia coli bacteria.

View Article and Find Full Text PDF

Drug nano-carriers are crucial for achieving targeted treatment against cancer disorders with minimal side effects. In this study, a pH-responsive nanocomposite based on halloysite nanotube (HNT) coated with carboxymethyl cellulose (CMC)/polyethylene glycol (PEG) hydrogel for controlled delivery of 5-Fluorouracil (5-FU), a hydrophobic chemotherapy drug prescribed for different types of cancers was synthesized for the first time using the water-in-oil-in-water (W/O/W) technique. The developed CMC/PEG/HNT/5-FU nanocomposite was characterized by dynamic light scattering (DLS), zeta potential, Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and Field emission scanning electron microscope (FE-SEM) to get information about the particle size, surface charge, interactions between functional groups, crystalline structure and morphology, respectively.

View Article and Find Full Text PDF

In this study, for the first time, by employing a simple and efficient double nano-emulsification method and using sweet almond oil as the organic phase, polyethylene glycol (PEG)/graphene oxide (GO)/silk fibroin (SF) hydrogel-nanocomposite was synthesized. The aim of the research was to fabricate a biocompatible targeted pH-sensitive sustained release carrier, improve the drug loading capacity and enhance the anticancer effect of doxorubicin (DOX) drug. The obtained values for the entrapment (%EE) and loading efficacy (%LE) were 87.

View Article and Find Full Text PDF

Type 1 diabetes mellitus is an autoimmune disease characterized by the loss of pancreatic isletcells. Insulin injections and pancreas transplants are currently available therapies. The former requires daily insulin injections, while the latter is constrained by donor organ availability.

View Article and Find Full Text PDF

Today, cancer treatment is an important issue in the medical world due to the challenges and side effects of ongoing treatment procedures. Current methods can be replaced with targeted nano-drug delivery systems to overcome such side effects. In the present work, an intelligent nano-system consisting of Chitosan (Ch)/Gamma alumina (γAl)/FeO and 5-Fluorouracil (5-FU) was synthesized and designed for the first time in order to influence the Michigan Cancer Foundation-7 (MCF-7) cell line in the treatment of breast cancer.

View Article and Find Full Text PDF

Curcumin application as an anti-cancer drug is faced with several impediments. This study has developed a platform that facilitates the sustained release of curcumin, improves loading efficiency, and anti-cancer activity. Montmorillonite (MMT) nanoparticles were added to chitosan (CS)-agarose (Aga) hydrogel and then loaded with curcumin (Cur) to prepare a curcumin-loaded nanocomposite hydrogel.

View Article and Find Full Text PDF

Graphene oxide (GO), an engineered nanomaterial, has a two-dimensional structure with carbon atoms arranged in a hexagonal array. While it has been widely used in many industries, such as biomedicine, electronics, and biosensors, there are still concerns over its safety. Recently, many studies have focused on the potential toxicity of GO.

View Article and Find Full Text PDF

Chlorpyrifos (CPF) is an organophosphorus (OP) pesticide, resulting in various health complications as the result of ingestion, inhalation, or skin absorption, and leads to DNA damage and increased oxidative stress. Metformin, derived from Galega officinalis, is reported to have anti-inflammatory and anti-apoptotic properties; thus, this study aimed to investigate the beneficial role of metformin in neurotoxicity induced by sub-acute exposure to CPF in Wistar rats. In this study, animals were divided into nine groups and were treated with different combinations of metformin and CPF.

View Article and Find Full Text PDF

Exposure to certain environmental toxins has been shown to be associated with cellular senescence mainly through induction of oxidative stress and impact on cellular systems. Acrylamide (ACR) has raised worldwide concerns regarding the high risk of human dietary exposure to its hazardous effect. Although there is ample evidence about the carcinogenicity of ACR, limited studies have focused on its impact on cellular aging.

View Article and Find Full Text PDF

Today, bacterial cellulose has received a great deal of attention for its medical applications due to its unique structural properties such as high porosity, good fluid uptake, good strength, and biocompatibility. This study aimed to fabricate and study bacterial cellulose/graphitic carbon nitride/nettles/trachyspermum nanocomposite by immersion and PVA/BC/g-C N /nettles/trachyspermum nanofiber by electrospinning method as a wound dressing. The g-C N and g-C N solution were synthesized and then were characterized using Fourier transform infrared, X-ray diffraction, Zeta Potential, and scanning electronic microscope analyzes.

View Article and Find Full Text PDF

pH-sensitive drug delivery systems based on amphiphilic copolymers constitute a promising strategy to overcome some challenges to cancer treatment. In the present study, quercetin-loaded chitosan/polyvinylpyrrolidone/γ-Alumina nanocomposite was fabricated through a double oil in water emulsification method for the first time. γ-Alumina was incorporated to improve the drug loading efficiency and release behavior of polyvinylpyrrolidone and chitosan copolymeric hydrogel.

View Article and Find Full Text PDF

Despite quercetin (QC) promising features for cancer therapy, low solubility, poor permeability, and short biological half-life time significantly confine its application in cancer therapy. In this study, a novel approach is developed to improve loading efficiency and attain quercetin sustained-release concurrently. In this direction, hydrogel nanocomposite of agarose (AG)-polyvinylpyrrolidone (PVP)-hydroxyapatite (HAp) was loaded with QC.

View Article and Find Full Text PDF

Chitosan (CS)/polyvinylpyrrolidone (PVP)/hematite (α-FeO) nanocomposites loaded with Doxorubicin (drug model) were synthesized via an oil-in-water emulsification method to develop a biocompatible and pH-sensitive drug nanocarrier for the first time. A hydrogel, including CS, PVP, and α-FeO, was fabricated successfully with glutaraldehyde (GA) as the cross-linker. Incorporating α-FeO into CS/PVP hydrogel improved the pH-sensitivity and developed beneficial hydrogel.

View Article and Find Full Text PDF

Aim Of The Study: Sepsis has well-documented inflammatory effects on cardiovascular and blood cells. This study is designed to investigate potential anti-inflammatory effects of metformin on cardiac and blood cells 12 and 24 h following cecal ligation and puncture (CLP)-induced sepsis.

Methods: For the purpose of this study, 36 male Wistar rats were divided into six groups: two groups underwent CLP, two groups underwent CLP and received metformin, and two groups only received sham operations.

View Article and Find Full Text PDF

In recent years, applying various wound dressings with antibacterial activities to expedite tissue repair stages has gained remarkable attention. The intertwined three-dimensional structure of nanofibers provides unique spaces for carrying drugs and repair agents during the wound healing process. In this research, a carbon quantum dot (CQD)/silica nanoparticle (Si NP)/silk fibroin (SF) nanocomposite was synthesized, and two novel wound dressings, a BC-CQD/Si NP/SF nanocomposite and a PVA-CQD/Si NP/SF nanofiber, were prepared by Spray Printing and Electrospinning methods and successfully characterized.

View Article and Find Full Text PDF

Objective: Metformin has a potent inhibitory activity against inflammation and oxidative stress, which inevitably occur in sepsis-associated encephalopathy (SAE). The precise mechanisms underlying neuroprotective effects of metformin in SAE, are still unclear. In the present work, the protective effect of metformin on SAE using cecal ligation and puncture (CLP) model of sepsis, was assessed.

View Article and Find Full Text PDF