The emergence of the graphene-based hybrid electrical-electrochemical vertical device (EEVD) has introduced a promising nanostructured biosensor tailored for point-of-care applications. In this study, we present an innovative EEVD capable of simultaneously detecting the receptor binding domain (RBD) of the SARS-CoV-2 spike protein in both serum and saliva. The foundation of the EEVD lies in a poly-neutral red-graphene heterojunction, which has been enhanced with a bioconjugate of gold nanoparticles and antibodies.
View Article and Find Full Text PDFThe outbreak of COVID-19 pandemics highlighted the need of sensitive, selective, and easy-to-handle biosensing devices. In the contemporary scenario, point-of-care devices for mass testing and infection mapping within a population have proven themselves as of primordial importance. Here, we introduce a graphene-based Electrical-Electrochemical Vertical Device (EEVD) point-of-care biosensor, strategically engineered for serologic COVID-19 diagnosis.
View Article and Find Full Text PDFTumour progression involves interactions among various cancer cell clones, including the cancer stem cell subpopulation and exogenous cellular components, termed cancer stromal cells. The latter include a plethora of tumour infiltrating immunocompetent cells, among which are also immuno-modulatory mesenchymal stem cells, which by vigorous migration to growing tumours and susequent transdifferentiation into various types of tumour-residing stromal cells, may either inhibit or support tumour progression. In the light of the scarce therapeutic options existing for the most malignant brain tumour glioblastoma, mesenchymal stem cells may represent a promising novel tool for cell therapy, e.
View Article and Find Full Text PDFGlioblastoma multiforme (GBM) represents the most lethal brain tumour, and these tumours have very limited treatment options. Mesenchymal stem cells (MSC) are considered as candidates for advanced cell therapies, due to their tropism towards GBM, possibly affecting their malignancy, thus also representing a potential therapeutic vector. Therefore, we aimed to compare the effects of bone-marrow-derived versus adipose-tissue-derived MSC (BM-/AT-MSC) on heterogeneous populations of tumour cells.
View Article and Find Full Text PDFThis study aimed to investigate the antitumor and immunomodulatory properties of the flavonoid apigenin (5,7,4'-trihydroxyflavone), which was extracted from Croton betulaster Mull, in glioma cell culture using the high-proliferative rat C6 glioma cell line as a model. Apigenin was found to have the ability to reduce the viability and proliferation of C6 cells in a time-dependent and dose-dependent manner, with an IC50 of 22.8 µmol/l, 40 times lower than that of temozolomide (1000 µmol/l), after 72 h of apigenin treatment.
View Article and Find Full Text PDFThe most aggressive subtype of brain tumors is glioma WHO grade IV, the glioblastoma (GBM). The present work aims to elucidate the role of kinin receptors in interactions between GBM cells and mesenchymal stem cells (MSC). The GBM cell line U87-MG was stably transfected to express dsRed protein, single cell cloned, expanded, and cultured with MSC, both in the direct co-cultures (DC) and indirect co-cultures (IC) at equal cell number ratio for 72 h.
View Article and Find Full Text PDFThe malignant gliomas are very common primary brain tumors with poor prognosis, which require more effective therapies than the current used, such as with chemotherapy drugs. In this work, we investigated the effects of several polyhydroxylated flavonoids namely, rutin, quercetin (F7), apigenin (F32), chrysin (F11), kaempferol (F12), and 3',4'-dihydroxyflavone (F2) in human GL-15 glioblastoma cells. We observed that all flavonoids decreased the number of viable cells and the mitochondrial metabolism.
View Article and Find Full Text PDF