The discovery of isozyme-selective histone deacetylase (HDAC) inhibitors is critical for understanding the biological functions of individual HDACs and for validating HDACs as drug targets. The isozyme HDAC10 contributes to chemotherapy resistance and has recently been described to be a polyamine deacetylase, but no studies toward selective HDAC10 inhibitors have been published. Using two complementary assays, we found Tubastatin A, an HDAC6 inhibitor, to potently bind HDAC10.
View Article and Find Full Text PDFUnlabelled: Transcription factors of the far-upstream element-binding protein (FBP) family represent cellular pathway hubs, and their overexpression in liver cancer (hepatocellular carcinoma [HCC]) stimulates tumor cell proliferation and correlates with poor prognosis. Here we determine the mode of oncogenic FBP overexpression in HCC cells. Using perturbation approaches (kinase inhibitors, small interfering RNAs) and a novel system for rapalog-dependent activation of AKT isoforms, we demonstrate that activity of the phosphatidylinositol-4,5-biphosphate 3-kinase/AKT pathway is involved in the enrichment of nuclear FBP1 and FBP2 in liver cancer cells.
View Article and Find Full Text PDFMethionine aminopeptidases (MetAPs) are responsible for the cotranslational cleavage of initiator methionines from nascent proteins. The MetAP2 subtype is up-regulated in many cancers, and selective inhibition of MetAP2 suppresses both vascularization and growth of tumors in animal models. The natural product fumagillin is a selective and potent irreversible inhibitor of MetAP2, and semisynthetic derivatives of fumagillin have shown promise in clinical studies for the treatment of cancer, and, more recently, for obesity.
View Article and Find Full Text PDFTranscription factors integrate a variety of oncogenic input information, facilitate tumour growth and cell dissemination, and therefore represent promising therapeutic target structures. Because over-expression of DNA-interacting far upstream element binding protein (FBP) supports non-small cell lung cancer (NSCLC) migration, we asked whether its repressor, FBP-interacting repressor (FIR) is functionally inactivated and how FIR might affect NSCLC cell biology. Different FIR splice variants were highly expressed in the majority of NSCLCs, with the highest levels in tumours carrying genomic gains of chromosome 8q24.
View Article and Find Full Text PDFUnlabelled: The far upstream element binding protein (FBP) and the FBP-interacting repressor (FIR) represent molecular tools for transcriptional fine tuning of target genes. Strong overexpression of FBP in human hepatocellular carcinoma (HCC) supports tumor growth and correlates with poor patient prognosis. However, the role of the transcriptional repressor FIR in hepatocarcinogenesis remains poorly delineated.
View Article and Find Full Text PDFBackground & Aims: Cancer cells often lose contact inhibition to undergo anchorage-independent proliferation and become resistant to apoptosis by inactivating the Hippo signaling pathway, resulting in activation of the transcriptional co-activator yes-associated protein (YAP). However, the oncogenic mechanisms of YAP activity are unclear.
Methods: By using cross-species analysis of expression data, the Notch ligand Jagged-1 (Jag-1) was identified as a downstream target of YAP in hepatocytes and hepatocellular carcinoma (HCC) cells.
Hepatocellular carcinoma (HCC) is one of the most frequent human malignancies with poor prognosis and increasing incidence in the Western world. Only for a minority of HCC patients, surgical treatment options offer potential cure and therapeutic success of pharmacological approaches is limited. Highly specific approaches (e.
View Article and Find Full Text PDFStability of many tumor-relevant proteins is partly mediated by E3 ligases, which determine substrate specificity within the ubiquitin system. Recent data demonstrated that increased nuclear expression of the E3 ligase seven in absentia homologue (SIAH)-1 in human hepatocarcinogenesis supports tumor cell proliferation and migration. To define whether closely related SIAH-2 synergizes with protumorigenic SIAH-1, we systematically analyzed expression, localization and functional relevance of SIAH-2 in human hepatocellular carcinoma (HCC).
View Article and Find Full Text PDFPancreatic endocrine tumors (PET) represent a heterogenous group of neoplasms. Although surgical resection is considered a safe and effective treatment for many PET, therapeutic options for inoperable and progressive PET are limited. The expression of heat-shock protein (HSP) 90 was investigated in 120 clinically and pathomorphologically well-characterized PET from 84 patients using immunohistochemistry.
View Article and Find Full Text PDFPurpose: The underlying molecular mechanisms of thymic epithelial malignancies (TEMs) are poorly understood. Consequently, there is a lack of efficacious targeted therapies and patient prognosis remains dismal, particularly for advanced TEMs. We sought to investigate protumorigenic mechanism relevant to this understudied cancer.
View Article and Find Full Text PDFBackground & Aims: Differential expression of tumor-relevant proteins based on aberrant proteasomal degradation may contribute to human (hepato)carcinogenesis. Recently, we identified the E3 ubiquitin ligase seven in absentia homolog (SIAH)-1 as frequently dysregulated in human hepatocellular carcinoma (HCC). We therefore systematically analyzed the expression, functional relevance, as well as possible downstream effectors of SIAH-1 in human liver carcinogenesis.
View Article and Find Full Text PDFUnlabelled: Microtubule-dependent effects are partly regulated by factors that coordinate polymer dynamics such as the microtubule-destabilizing protein stathmin (oncoprotein 18). In cancer cells, increased microtubule turnover affects cell morphology and cellular processes that rely on microtubule dynamics such as mitosis and migration. However, the molecular mechanisms deregulating modifiers of microtubule activity in human hepatocarcinogenesis are poorly understood.
View Article and Find Full Text PDFUnlabelled: The inhibition of heat shock protein 90 (Hsp90) has emerged as a promising antineoplastic strategy in diverse human malignancies. Hsp90 has been predicted to be involved in hepatocellular carcinoma (HCC) development; however, its role in hepatocarcinogenesis remains elusive. Using chemically distinctive Hsp90 inhibitors, we show that Hsp90 capacitates the aberrant expression and activity of crucial hepatocarcinogenesis-driving factors (e.
View Article and Find Full Text PDFDynamic instability of the microtubule network modulates processes such as cell division and motility, as well as cellular morphology. Overexpression of the microtubule-destabilizing phosphoprotein stathmin is frequent in human malignancies and represents a promising therapeutic target. Although stathmin inhibition gives rise to antineoplastic effects, additional and functionally redundant microtubule-interacting proteins may attenuate the efficiency of this therapeutic approach.
View Article and Find Full Text PDFNewly made proteins must achieve a functional shape, the native configuration, before they can play their physiological roles in the cell. Proteins must also travel to the locale (e.g.
View Article and Find Full Text PDF