Publications by authors named "Mona Foth"

Metastatic melanoma remains a major clinical challenge. Large-scale genomic sequencing of melanoma has identified bona fide activating mutations in RAC1, which are associated with resistance to BRAF-targeting therapies. Targeting the RAC1-GTPase pathway, including the upstream activator PREX2 and the downstream effector PI3Kβ, could be a potential strategy for overcoming therapeutic resistance, limiting melanoma recurrence, and suppressing metastatic progression.

View Article and Find Full Text PDF

Aberrant activation of the PI3K-AKT pathway is common in many cancers, including melanoma, and AKT1, 2 and 3 (AKT1-3) are bona fide oncoprotein kinases with well-validated downstream effectors. However, efforts to pharmacologically inhibit AKT have proven to be largely ineffective. In this study, we observed paradoxical effects following either pharmacologic or genetic inhibition of AKT1-3 in melanoma cells.

View Article and Find Full Text PDF

Background: CXCR2 is a chemokine receptor expressed in myeloid cells, including neutrophils and macrophages. Pharmacological inhibition of CXCR2 has been shown to sensitize tumours to immune checkpoint inhibitor immunotherapies in some cancer types.

Objective: To investigate the effects of loss in regulation of tumour-infiltrating myeloid cells and their relationship to lymphocytes during bladder tumorigenesis.

View Article and Find Full Text PDF

Phosphatidylinositol-3'-kinases (PI3Ks) are a family of lipid kinases that phosphorylate the 3' hydroxyl (OH) of the inositol ring of phosphatidylinositides (PI). Through their downstream effectors, PI3K generated lipids (PI3K-lipids hereafter) such as PI(3,4,5)P and PI(3,4)P regulate myriad biochemical and biological processes in both normal and cancer cells including responses to growth hormones and cytokines; the cell division cycle; cell death; cellular growth; angiogenesis; membrane dynamics; and autophagy and many aspects of cellular metabolism. Engagement of receptor tyrosine kinase by their cognate ligands leads to activation of members of the Class I family of PI3'-kinases (PI3Kα, β, δ & γ) leading to accumulation of PI3K-lipids.

View Article and Find Full Text PDF

This article provides a brief review of the therapeutic opportunity of inhibiting autophagy in pancreatic cancer. The autophagic process, importance of autophagy in pancreatic cancer, relevant clinical trials, and new agents in preclinical and clinical development are discussed.

View Article and Find Full Text PDF

Several BRAF-driven cancers, including advanced BRAF-driven melanoma, non-small-cell lung carcinoma, and thyroid cancer, are currently treated using first-line inhibitor combinations of BRAF plus MEK1/2. However, despite the success of this vertical inhibition strategy, the durability of patient response is often limited by the phenomenon of primary or acquired drug resistance. It has recently been shown that autophagy, a conserved cellular recycling process, is increased in BRAF-driven melanoma upon inhibition of BRAF signaling.

View Article and Find Full Text PDF

Mutational activation of RAC1 is detected in ~7% of cutaneous melanoma, with the most frequent mutation (RAC1 ) encoding for RAC1 . RAC1 is a fast-cycling GTPase that leads to accumulation of RAC1 -GTP, which has potentially pleiotropic regulatory functions in melanoma cell signaling and biology. However, the precise mechanism by which mutationally activated RAC1 propagates its pro-tumorigenic effects remains unclear.

View Article and Find Full Text PDF

In the version of this article initially published, the label over the bottom schematic in Fig. 1a was "pH > 5.0"; it should have been "pH < 5.

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDA) was responsible for ~ 44,000 deaths in the United States in 2018 and is the epitome of a recalcitrant cancer driven by a pharmacologically intractable oncoprotein, KRAS. Downstream of KRAS, the RAF→MEK→ERK signaling pathway plays a central role in pancreatic carcinogenesis. However, paradoxically, inhibition of this pathway has provided no clinical benefit to patients with PDA.

View Article and Find Full Text PDF

Recent studies of muscle-invasive bladder cancer show that FGFR3 mutations are generally found in a luminal papillary tumour subtype that is characterised by better survival than other molecular subtypes. To better understand the role of FGFR3 in invasive bladder cancer, we examined the process of tumour development induced by the tobacco carcinogen OH-BBN in genetically engineered models that express mutationally activated FGFR3 S249C or FGFR3 K644E in the urothelium. Both occurrence and progression of OH-BBN-driven tumours were increased in the presence of an S249C mutation compared to wild-type control mice.

View Article and Find Full Text PDF

Background: Cutaneous melanoma is the deadliest skin cancer, with an increasing incidence and mortality rate. Currently, staging of patients with primary melanoma is performed using histological biomarkers such as tumor thickness and ulceration. As disruption of the epigenomic landscape is recognized as a widespread feature inherent in tumor development and progression, we aimed to identify novel biomarkers providing additional clinical information over current factors using unbiased genome-wide DNA methylation analyses.

View Article and Find Full Text PDF

CXCR2 has been suggested to have both tumor-promoting and tumor-suppressive properties. Here we show that CXCR2 signaling is upregulated in human pancreatic cancer, predominantly in neutrophil/myeloid-derived suppressor cells, but rarely in tumor cells. Genetic ablation or inhibition of CXCR2 abrogated metastasis, but only inhibition slowed tumorigenesis.

View Article and Find Full Text PDF

Malignant melanoma is one of the most aggressive cancers. Several new therapeutic strategies that focus on immuno- and/or targeted therapy have been developed, which have entered clinical trials or already been approved. This review provides an update on prognostic and predictive biomarkers in melanoma that may be used to improve the clinical management of patients.

View Article and Find Full Text PDF

Pancreatitis is a significant clinical problem and the lack of effective therapeutic options means that treatment is often palliative rather than curative. A deeper understanding of the pathogenesis of both acute and chronic pancreatitis is necessary to develop new therapies. Pathological changes in pancreatitis are dependent on innate immune cell recruitment to the site of initial tissue damage, and on the coordination of downstream inflammatory pathways.

View Article and Find Full Text PDF

Although somatic mutations and overexpression of the tyrosine kinase fibroblast growth factor receptor 3 (FGFR3) are strongly associated with bladder cancer, evidence for their functional involvement in the pathogenesis remains elusive. Previously we showed that activation of Fgfr3 alone is not sufficient to initiate urothelial tumourigenesis in mice. Here we hypothesize that cooperating mutations are required for Fgfr3-dependent tumourigenesis in the urothelium and analyse a mouse model in which an inhibitor of Pi3k-Akt signalling, Pten, is deleted in concert with Fgfr3 activation (UroIICreFgfr3(+/) (K644E) Pten(flox) (/flox)).

View Article and Find Full Text PDF

mir-17-92, a potent polycistronic oncomir, encodes six mature miRNAs with complex modes of interactions. In the Eμ-myc Burkitt's lymphoma model, mir-17-92 exhibits potent oncogenic activity by repressing c-Myc-induced apoptosis, primarily through its miR-19 components. Surprisingly, mir-17-92 also encodes the miR-92 component that negatively regulates its oncogenic cooperation with c-Myc.

View Article and Find Full Text PDF

The human fibroblast growth factor receptor 3 (FGFR3) gene is frequently mutated in superficial urothelial cell carcinoma (UCC). To test the functional significance of FGFR3 activating mutations as a 'driver' of UCC, we targeted the expression of mutated Fgfr3 to the murine urothelium using Cre-loxP recombination driven by the uroplakin II promoter. The introduction of the Fgfr3 mutations resulted in no obvious effect on tumorigenesis up to 18 months of age.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionekmh28e8schtmk8gf71gdj1taojjs8le): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once