This work inspects the utilization of all-polymer solar cells (APSCs) in indoor applications under LED illumination, with a focus on boosting efficiency through simulation-based design. The study employs a SCAPS TCAD device simulator to investigate the performance of APSCs under white LED illumination at 1000 lux, with a power density of 0.305 mW/cm.
View Article and Find Full Text PDFThe low bandgap antimony selenide (SbSe) and wide bandgap organic solar cell (OSC) can be considered suitable bottom and top subcells for use in tandem solar cells. Some properties of these complementary candidates are their non-toxicity and cost-affordability. In this current simulation study, a two-terminal organic/SbSe thin-film tandem is proposed and designed through TCAD device simulations.
View Article and Find Full Text PDFTandem solar cells (TSCs) have attracted prodigious attention for their high efficiency, which can surmount the Shockley-Queisser limit for single-junction solar cells. Flexible TSCs are lightweight and cost-effective, and are considered a promising approach for a wide range of applications. In this paper, a numerical model, based on TCAD simulation, is presented to assess the performance of a novel two-terminal (2T) all-polymer/CIGS TSC.
View Article and Find Full Text PDF