Publications by authors named "Mona El Badawi-Sidhu"

Pyridoxal 5'-phosphate (PLP) is an essential cofactor for nearly 60 enzymes but is a highly reactive molecule that is toxic in its free form. How PLP levels are regulated and how PLP is delivered to target enzymes are still open questions. The COG0325 protein family belongs to the fold-type III class of PLP enzymes and binds PLP but has no known biochemical activity although it occurs in all kingdoms of life.

View Article and Find Full Text PDF

Background: It is now recognized that enzymatic or chemical side-reactions can convert normal metabolites to useless or toxic ones and that a suite of enzymes exists to mitigate such metabolite damage. Examples are the reactive imine/enamine intermediates produced by threonine dehydratase, which damage the pyridoxal 5'-phosphate cofactor of various enzymes causing inactivation. This damage is pre-empted by RidA proteins, which hydrolyze the imines before they do harm.

View Article and Find Full Text PDF

RidA (for Reactive Intermediate Deaminase A) proteins are ubiquitous, yet their function in eukaryotes is unclear. It is known that deleting Salmonella enterica ridA causes Ser sensitivity and that S. enterica RidA and its homologs from other organisms hydrolyze the enamine/imine intermediates that Thr dehydratase forms from Ser or Thr.

View Article and Find Full Text PDF

Homocysteine S-methyltransferases (HMTs) are widely distributed enzymes that convert homocysteine (Hcy) into methionine (Met) using either S-adenosylmethionine (AdoMet) or the plant secondary product S-methylmethionine (SMM) as methyl donor. AdoMet is chirally and covalently unstable, with racemization of natural (S,S)-AdoMet yielding biologically inactive (R,S)-AdoMet and depurination yielding S-ribosylmethionine (S-ribosylMet). The apparently futile AdoMet-dependent reaction of HMTs was assigned a role in repairing chiral damage to AdoMet in yeast: yeast HMTs strongly prefer (R,S)- to (S,S)-AdoMet and thereby limit (R,S)-AdoMet build-up [Vinci and Clarke (2010) J.

View Article and Find Full Text PDF

NADH and NADPH undergo spontaneous and enzymatic reactions that produce R and S forms of NAD(P)H hydrates [NAD(P)HX], which are not electron donors and inhibit various dehydrogenases. In bacteria, yeast (Saccharomyces cerevisiae), and mammals, these hydrates are repaired by the tandem action of an ADP- or ATP-dependent dehydratase that converts (S)-NAD(P)HX to NAD(P)H and an epimerase that facilitates interconversion of the R and S forms. Plants have homologs of both enzymes, the epimerase homolog being fused to the vitamin B6 salvage enzyme pyridoxine 5'-phosphate oxidase.

View Article and Find Full Text PDF