Publications by authors named "Mona Dvir-Ginzberg"

Brain aging is associated with cognitive decline, reduced synaptic plasticity, and altered metabolism. The activity of mechanistic target of rapamycin (mTOR) has a major impact on aging by regulating cellular metabolism. Although reduced mTOR signaling has a general antiaging effect, it can negatively affect the aging brain by reducing synaptogenesis and thus cognitive functions.

View Article and Find Full Text PDF

As organisms age, the activity of the endocannabinoid system in the brain declines, coinciding with increased neuroinflammation and disrupted hypothalamic functions. Notably, cannabinoid receptors type-1 (CB1) are highly expressed in the ventromedial hypothalamic nucleus (VMH) within the mediobasal hypothalamus, a central area of neuroendocrine regulation. This study investigates whether the CB1 receptor influences age-related changes in a brain region-dependent manner.

View Article and Find Full Text PDF

Background: Previously, fragments from Sirtuin 1 (SIRT1) were identified in preclinical and clinical samples to display an increase in serum levels for N-terminal (NT) SIRT1 vs. C-terminal (CT) SIRT1, indicative of early signs of OA. Here we tested NT/CT SIRT1 levels as well as a novel formulated sandwich assay to simultaneously detect both domains of SIRT1 in a manner that may inform us about the levels of full-length SIRT1 in the circulation (flSIRT1) of clinical cohorts undergoing knee joint distraction (KJD).

View Article and Find Full Text PDF

Research conducted using murine preclinical models of osteoarthritis (OA) over the last three decades has brought forth many exciting developments showcasing mechanisms and pathways that drive disease pathogenesis. These models have identified therapeutic targets that can be modulated via innovative biologicals and pharmaceuticals. However, many of these approaches have failed to translate to humans and reach the clinic.

View Article and Find Full Text PDF

: Previous studies have shown that the cleavage of Sirt1 contributes to the development of osteoarthritis (OA). In fact, OA was effectively abrogated by the intra-articular (IA) administration of two compounds, one blocking Sirt1 cleavage (CA074me) and the other activating Sirt1 (SRT1720), using a post-traumatically induced model (PTOA) in young female mice. In this study, we attempted to understand if this local treatment is effective in preventing age-associated OA (AOA) progression and symptoms.

View Article and Find Full Text PDF

Critical maxillofacial bone fractures do not heal spontaneously, thus, often there is a need to facilitate repair via surgical intervention. Gold standard approaches, include the use of autologous bone graft, or devices supplemented with osteogenic growth factors and bone substitutes. This research aimed to employ a critical size calvaria defect model, to determine if the addition of chondrocytes to collagen-containing bone graft substitute, may expedite bone repair.

View Article and Find Full Text PDF

In cranial flat bone fractures, spontaneous bone repair will occur only when the fracture ends are in close contact. However, in cases wherein bone discontinuity is extensive, surgical interventions are often required. To this end, autologous bone is harvested and surgically integrated into the site of fracture.

View Article and Find Full Text PDF

Background: In a previous report, we have identified the cannabinoid receptor 2 (CB2) agonist HU308 to possess a beneficial effect in preventing age and trauma-induced osteoarthritis (OA) in mice. The effects of HU308 were largely related to the capacity of this compound to induce cartilage anabolism which was dependent on the CREB/SOX9 axis, and exhibited pro-survival and pro-proliferative hallmarks of articular cartilage following treatment. Here, we utilized the novel cannabinoid-fenchone CB2 agonists (1B, 1D), which were previously reported to render anti-inflammatory effects in a zymosan model.

View Article and Find Full Text PDF

Osteoarthritis (OA) is characterized by progressive, irreversible erosion of articular cartilage accompanied by severe pain and immobility. This study aimed to assess the effect and mechanism of action of HU308, a selective cannabinoid receptor type 2 (CB2) agonist, in preventing OA-related joint damage. To test the assumption that HU308 could prevent OA-related joint damage, Cnr2 null mice and wild type (WT) mice were aged to reach 20 months and analyzed for joint structural features.

View Article and Find Full Text PDF

Cartilage mineralization is a tightly controlled process, imperative for skeletal growth and fracture repair. However, in osteoarthritis (OA), cartilage mineralization may impact the joint range of motion, inflict pain, and increase chances for joint effusion. Here we attempt to understand the link between inflammation and cartilage mineralization by targeting Sirtuin 1 (SIRT1) and lymphoid enhancer binding factor 1 (LEF1), both reported to have contrasting effects on cartilage.

View Article and Find Full Text PDF

Epigenetic modification is a key driver of differentiation, and the deacetylase Sirtuin1 (SIRT1) is an established regulator of cell function, ageing, and articular cartilage homeostasis. Here we investigate the role of SIRT1 during development of chondrocytes by using human embryonic stem cells (hESCs). HESC-chondroprogenitors were treated with SIRT1 activator; SRT1720, or inhibitor; EX527, during differentiation.

View Article and Find Full Text PDF

Objective: Periodontitis is one the most common chronic inflammatory conditions, resulting in destruction of tooth-supporting tissues and leading to tooth loss. Porphyromonas gingivalis activates host macrophages to secrete pro-inflammatory cytokines and elicit tissue damage, in part by inducing NF-kappa-B transactivation. Since NFκB transactivation is negatively regulated by the Nicotinamide adenine dinucleotide (NAD)-dependent deacetylase enzyme Sirt1, we sought to assess if RAW264.

View Article and Find Full Text PDF

Biomarkers, especially biochemical markers, are important in osteoarthritis (OA) research, clinical trials, and drug development and have potential for more extensive use in therapeutic monitoring. However, they have not yet had any significant impact on disease diagnosis and follow-up in a clinical context. Nevertheless, the development of immunoassays for the detection and measurement of biochemical markers in OA research and therapy is an active area of research and development.

View Article and Find Full Text PDF

Objective: Previous work has established that the deacetylase sirtuin-1 (SIRT1) is cleaved by cathepsin B in chondrocytes subjected to proinflammatory stress, yielding a stable but inactive N-terminal (NT) polypeptide (75SIRT1) and a C-terminal (CT) fragment. The present work examined if chondrocyte-derived NT-SIRT1 is detected in serum and may serve as an investigative and exploratory biomarker of osteoarthritis (OA).

Methods: We developed a novel ELISA assay to measure the ratio of NT to CT of SIRT1 in the serum of human individuals and mice subjected to post-traumatic OA (PTOA) or age-dependent OA (ADOA).

View Article and Find Full Text PDF

In contrast to normal regenerating tissue, resistance to Fas- and FasL-positive T cell-induced apoptosis were detected in myofibroblasts from fibrotic-lungs of humans and mice following bleomycin (BLM) exposure. In this study we show, decreased FLIP expression in lung-tissues with resolution of BLM-induced fibrosis and in isolated-lung fibroblasts, with decreased resistance to apoptosis. Using a FLIP-expression vector or a shFLIP-RNA, we further confirmed the critical need for FLIP to regain/lose susceptibility of fibrotic-lung myofibroblast to Fas-induced apoptosis.

View Article and Find Full Text PDF

Changes in potential regulatory elements are thought to be key drivers of phenotypic divergence. However, identifying changes to regulatory elements that underlie human-specific traits has proven very challenging. Here, we use 63 reconstructed and experimentally measured DNA methylation maps of ancient and present-day humans, as well as of six chimpanzees, to detect differentially methylated regions that likely emerged in modern humans after the split from Neanderthals and Denisovans.

View Article and Find Full Text PDF

The C-terminus of SIRT1 can be cleaved by cathepsin B at amino acid H533 to generate a lower-functioning, N-terminally intact 75 kDa polypeptide (75SIRT1) that might be involved in age-related pathologies. However, the mechanisms underlying cathepsin B docking to and cleavage of SIRT1 are unclear. Here, we first identified several 75SIRT1 variants that are augmented with aging correlatively with increased cathepsin B levels in various mouse tissues, highlighting the possible role of this cleavage event in age-related pathologies.

View Article and Find Full Text PDF

The balance between detrimental, pro-aging, often stochastic processes and counteracting homeostatic mechanisms largely determines the progression of aging. There is substantial evidence suggesting that the endocannabinoid system (ECS) is part of the latter system because it modulates the physiological processes underlying aging. The activity of the ECS declines during aging, as CB1 receptor expression and coupling to G proteins are reduced in the brain tissues of older animals and the levels of the major endocannabinoid 2-arachidonoylglycerol (2-AG) are lower.

View Article and Find Full Text PDF

Reduced SIRT1 activity and levels during osteoarthritis (OA) promote gradual loss of cartilage. Loss of cartilage matrix is accompanied by an increase in matrix metalloproteinase (MMP) 13, partially because of enhanced LEF1 transcriptional activity. In this study, we assessed the role of SIRT1 in LEF1-mediated MMP13 gene expression in human OA chondrocytes.

View Article and Find Full Text PDF

The past decade has witnessed many advances in the understanding of sirtuin biology and related regulatory circuits supporting the capacity of these proteins to serve as energy-sensing molecules that contribute to healthspan in various tissues, including articular cartilage. Hence, there has been a significant increase in new investigations that aim to elucidate the mechanisms of sirtuin function and their roles in cartilage biology, skeletal development, and pathologies such as osteoarthritis (OA), rheumatoid arthritis (RA), and intervertebral disc degeneration (IVD). The majority of the work carried out to date has focused on SIRT1, although SIRT6 has more recently become a focus of some investigations.

View Article and Find Full Text PDF

SOX9 is a pivotal transcription factor in developing and adult cartilage. Its gene is expressed from the multipotent skeletal progenitor stage and is active throughout chondrocyte differentiation. While it is repressed in hypertrophic chondrocytes in cartilage growth plates, it remains expressed throughout life in permanent chondrocytes of healthy articular cartilage.

View Article and Find Full Text PDF
Article Synopsis
  • - Changes in aggrecan levels in articular cartilage are linked to osteoarthritis (OA), a common joint disease, with SOX9 acetylation affecting ACAN gene activation.
  • - In primary chondrocytes from OA cartilage, decreased ACAN mRNA and increased acetylated SOX9 were observed, with SOX9 localization varying between damaged and intact tissues.
  • - Deacetylation of SOX9 enhances its nuclear translocation and ability to activate ACAN, especially in 3D cultures that showed improved binding to the ACAN enhancer compared to traditional 2D cultures.
View Article and Find Full Text PDF

Introduction: Lysosomal cathepsins have been reported to contribute to Osteoarthritis (OA) pathophysiology due to their increase in pro-inflammatory conditions. Given the causal role of cathepsins in OA, monitoring their specific activity could provide means for assessing OA severity. To this end, we herein sought to assess a cathepsin activity-based probe (ABP), GB123, in vitro and in vivo.

View Article and Find Full Text PDF

The progressive nature of osteoarthritis is manifested by the dynamic increase of degenerated articular cartilage, which is one of the major characteristics of this debilitating disease. As articular chondrocytes become exposed to inflammatory stress they enter a pro-catabolic state, which leads to the secretion and activation of a plethora of proteases. In aim to detect the disease before massive areas of cartilage are destroyed, various protein and non-protein biomarkers have been examined in bodily fluids and correlated with disease severity.

View Article and Find Full Text PDF