Graphene oxide (GO) is a very attractive material for use in a vast number of applications. However, before its widespread use, it is important to consider potential issues related to environmental safety to support its safe application. The aim of this study was to investigate effects on fish (rainbow trout) following GO exposure.
View Article and Find Full Text PDFGraphene-based conductive inks offer attractive possibilities in many printing technology applications. Often, these inks contain a mixture of compounds, such as solvents and stabilizers. For the safe(r) and sustainable use of such materials in products, potentially hazardous components must be identified and considered in the design stage.
View Article and Find Full Text PDFTwo-dimensional (2D) materials have attracted tremendous interest ever since the isolation of atomically thin sheets of graphene in 2004 due to the specific and versatile properties of these materials. However, the increasing production and use of 2D materials necessitate a thorough evaluation of the potential impact on human health and the environment. Furthermore, harmonized test protocols are needed with which to assess the safety of 2D materials.
View Article and Find Full Text PDFNanomaterials (NMs) pose challenges in performing bioaccumulation studies in fish and in regulatory interpretation of results. Therefore, a clear guidance is needed to obtain reliable, reproducible and comparable results. By analysing all the available literature, we aim in this manuscript to identify the critical aspects that should be addressed in these type of studies.
View Article and Find Full Text PDFThe bioaccumulation potential of spherical and rod-shaped CuO nanomaterials (NMs) was assessed in rainbow trout (Oncorhynchus mykiss) exposed via water and diet following the OECD Test Guideline No. 305. Fish were exposed via diet to both NMs at concentrations of 70 and 500 mg Cu/kg for 15 days, followed by 44 days of depuration.
View Article and Find Full Text PDFAn integrated testing strategy for ecotoxicity assessment (ITS-ECO) was developed to aid in the hazard and fate assessment of engineered nanomaterials (ENMs) deposited in marine environments using the bivalve Mytilus spp. as a test species. The ENMs copper(II) oxide (CuO) and titanium dioxide (TiO ), either in pristine form (core) or with functionalized coatings (polyethylene glycol [PEG], carboxyl [COOH], and ammonia [NH ]) were selected as case study materials based on their production levels and use.
View Article and Find Full Text PDFThe first step of nanomaterial accumulation in the aquatic environment is the uptake of particulate material. For substances with very low water solubility, exposure via water may be of limited relevance in comparison to the dietary route. The OECD Test Guideline 305 for bioaccumulation testing in fish using dietary exposure recommends to add substances to fish food following methodologies normally used in aquaculture (e.
View Article and Find Full Text PDFOrganically modified clays can be used as nanofillers in polymer-clay nanocomposites to create bio-based packaging with improved strength and barrier properties. The impact of organic modification on the physico-chemical properties and toxicity of clays has yet to be fully investigated but is essential to ensure their safe use. Two organoclays, named N116_HDTA and N116_TMSA, were prepared using a commercially available sodium bentonite clay and the organic modifiers hexadecyl trimethyl ammonium bromide (HDTA) and octadecyl trimethyl ammonium chloride (TMSA).
View Article and Find Full Text PDFTitanium dioxide nanoparticles (TiO-NPs) have a wide number of applications in cosmetic, solar and paint industries due to their photocatalyst and ultraviolet blocking properties. The continuous increase in the production of TiO-NPs enhances the risk for this manufactured nanomaterial to enter water bodies through treated effluents or agricultural amendments. TiO-NPs have shown very low toxicity in a number of aquatic organisms.
View Article and Find Full Text PDFEcosystems are exposed to a wide variety of individual substances, including at the nano-scale; and the potential adverse effects of their interactions are an increasing concern. The purpose of the present study was to determine whether zinc oxide nanoparticles (ZnONPs) at a no-observed-effect concentration modulate the cytotoxicity of copper nanoparticles (CuNPs) in the fish hepatoma cell line PLHC-1 after 48 h of exposure and the contribution of the released ions to these effects. Cells were exposed to 50-nm CuNPs (0.
View Article and Find Full Text PDFThe increasing use of ZnO nanoparticles (ZnO NPs) in different fields has raised concerns about the possible environmental risks associated with these NPs entering aquatic systems. In this study, using a dietary exposure route, we have analysed the tissue distribution and depuration pattern of Zn as well as any associated redox balance disturbances in rainbow trout (Oncorhynchus mykiss) following exposure to ZnO NPs (20-30nm). Fish were fed a diet spiked with ZnO NPs prepared from a dispersion in sunflower oil at doses of 300 or 1000mg ZnO NPs/kg feed for 10days.
View Article and Find Full Text PDFAmong all classes of nanomaterials, silver nanoparticles (AgNPs) have potentially an important ecotoxicological impact, especially in freshwater environments. Fish are particularly susceptible to the toxic effects of silver ions and, with knowledge gaps regarding the contribution of dissolution and unique particle effects to AgNP toxicity, they represent a group of vulnerable organisms. Using cell lines (RTL-W1, RTH-149, RTG-2) and primary hepatocytes of rainbow trout (Oncorhynchus mykiss) as in vitro test systems, we assessed the cytotoxicity of the representative AgNP, NM-300K, and AgNO3 as an Ag+ ion source.
View Article and Find Full Text PDFThe generation of reactive oxygen species (ROS) and consequent oxidative stress is regarded as a relevant mechanism for nanoparticle toxicity. In cells, the activation of the aryl hydrocarbon receptor (AhR) triggers a cascade of defence responses against oxidative stress. By increasing AhR dependent cellular anti-oxidant activity, we tested the extent to which the cytotoxic effect of copper nanoparticles (CuNPs) is governed by oxidative stress.
View Article and Find Full Text PDFHere we examined whether the addition of a non-toxic concentration (6.25 μg/mL) of zinc oxide nanoparticles (ZnONPs: 19, 35 and 57 nm, respectively) modulates the cytotoxicity of copper nanoparticles (CuNPs, 63 nm in size) in the human hepatoma cell line HepG2. The cytotoxic effect of CuNPs on HepG2 cells was markedly enhanced by the ZnONPs, the largest ZnONPs causing the highest increase in toxicity.
View Article and Find Full Text PDFIn this study, we explored the biocompatibility of Au nanoparticles (NPs) capped with peptide-biphenyl hybrid (PBH) ligands containing glycine (Gly), cysteine (Cys), tyrosine (Tyr), tryptophan (Trp) and methionine (Met) amino acids in the human hepatocellular carcinoma cell line Hep G2. Five AuNPs, Au[(Gly-Tyr-Met)2B], Au[(Gly-Trp-Met)2B], Au[(Met)2B], Au[(Gly-Tyr-TrCys)2B] and Au[(TrCys)2B], were synthesised. Physico-chemical and cytotoxic properties were thoroughly studied.
View Article and Find Full Text PDFThe four copper nanoparticles (CuNPs) with the size of 25, 50, 78 and 100 nm and one type of micron-sized particles (MPs) (~500 nm) were exposed to two mammalian (H4IIE and HepG2) and two piscine (PLHC-1 and RTH-149) cell lines to test the species-specific toxicities of CuNPs. The results showed that the morphologies, ion release and size of the particles all played an important role when investigating the toxicity. Furthermore, the authors found that the particle forms of CuNPs in suspensions highly contribute to the toxicity in all exposed cell lines whereas copper ions (Cu(2+)) only caused significant responses in mammalian cell lines, indicating the species-specific toxicity of CuNPs.
View Article and Find Full Text PDFThe increasing presence of ZnO nanoparticles (NPs) in consumer products may be having a dramatic impact in aquatic environments. The evaluation of ZnO NP toxicity represents a great challenge. This study aimed at evaluating the cytotoxic effect of micro- and nanosized ZnO in a fish and a mammalian hepatoma cell line.
View Article and Find Full Text PDF