Traumatic musculoskeletal injuries that result in bone defects or fractures often affect both bone and the surrounding soft tissue. Clinically, these types of multi-tissue injuries have increased rates of complications and long-term disability. Vascular integrity is a key clinical indicator of injury severity, and revascularization of the injury site is a critical early step of the bone healing process.
View Article and Find Full Text PDFUnlabelled: Bone morphogenetic protein-2 (BMP-2) is an osteoinductive growth factor used clinically to induce bone regeneration and fusion. Some complications associated with BMP-2 treatment have been attributed to rapid release of BMP-2 from conventional collagen scaffolds, motivating the development of tunable sustained-release strategies. We incorporated BMP-2-binding heparin microparticles (HMPs) into a hydrogel scaffold to improve spatiotemporal control of BMP-2 delivery to large bone defects.
View Article and Find Full Text PDFVolumetric muscle loss (VML) injuries present a large clinical challenge with a significant need for new interventions. While there have been numerous reviews on muscle injury models, few have critically evaluated VML models. The objective of this review is to discuss current preclinical models of VML in terms of models, analytical outcomes, and therapeutic interventions, and to provide guidelines for the future use of preclinical VML models.
View Article and Find Full Text PDFTissue engineering strategies have utilized a wide spectrum of synthetic and naturally-derived scaffold materials. Synthetic scaffolds are better defined and offer the ability to precisely and reproducibly control their properties, while naturally-derived scaffolds typically have inherent biological and structural properties that may facilitate tissue growth and remodeling. More recently, efforts to design optimized biomaterial scaffolds have blurred the line between these two approaches.
View Article and Find Full Text PDFSevere injuries to the extremities often result in muscle trauma and, in some cases, significant volumetric muscle loss (VML). These injuries continue to be challenging to treat, with few available clinical options, a high rate of complications, and often persistent loss of limb function. To facilitate the testing of regenerative strategies for skeletal muscle, we developed a novel quadriceps VML model in the rat, specifically addressing functional recovery of the limb.
View Article and Find Full Text PDFAlthough severe extremity trauma is often inclusive of skeletal and vascular damage in combination, segmental bone defect repair with concomitant vascular injury has yet to be experimentally investigated. To this end, we developed a novel rat composite limb injury model by combining a critically-sized segmental bone defect with surgically-induced hind limb ischemia (HLI). Unilateral 8mm femoral defects were created alone (BD) or in combination with HLI (BD + HLI), and all defects were treated with rhBMP-2 via a hybrid biomaterial delivery system.
View Article and Find Full Text PDFExtremity injuries involving large bone defects with concomitant severe muscle damage are a significant clinical challenge often requiring multiple treatment procedures and possible amputation. Even if limb salvage is achieved, patients are typically left with severe short- and long-term disabilities. Current preclinical animal models do not adequately mimic the severity, complexity, and loss of limb function characteristic of these composite injuries.
View Article and Find Full Text PDF