Publications by authors named "Momoka Nagamine"

Engineering functional tissues and organs remains a fundamental pursuit in bio-fabrication. However, the accurate constitution of complex shapes and internal anatomical features of specific organs, including their intricate blood vessels and nerves, remains a significant challenge. Inspired by the Matryoshka doll, here a new method called "Intra-Embedded Bioprinting (IEB)" is introduced building upon existing embedded bioprinting methods.

View Article and Find Full Text PDF

Engineering functional tissues and organs remains a fundamental pursuit in biofabrication. However, the accurate constitution of complex shapes and internal anatomical features of specific organs, including their intricate blood vessels and nerves, remains a significant challenge. Inspired by the Matryoshka doll, we here introduce a new method called 'Intra-Embedded Bioprinting (IEB),' building upon existing embedded bioprinting methods.

View Article and Find Full Text PDF

Microgels have recently received widespread attention for their applications in a wide array of domains such as tissue engineering, regenerative medicine, and cell and tissue transplantation because of their properties like injectability, modularity, porosity, and the ability to be customized in terms of size, form, and mechanical properties. However, it is still challenging to mass (high-throughput) produce microgels with diverse sizes and tunable properties. Herein, we utilized an air-assisted co-axial device (ACAD) for continuous production of microgels in a high-throughput manner.

View Article and Find Full Text PDF

Clinical lung transplantation has rapidly established itself as the gold standard of treatment for end-stage lung diseases in a restricted group of patients since the first successful lung transplant occurred. Although significant progress has been made in lung transplantation, there are still numerous obstacles on the path to clinical success. The development of bioartificial lung grafts using patient-derived cells may serve as an alternative treatment modality; however, challenges include developing appropriate scaffold materials, advanced culture strategies for lung-specific multiple cell populations, and fully matured constructs to ensure increased transplant lifetime following implantation.

View Article and Find Full Text PDF

Despite substantial advancements in development of cancer treatments, lack of standardized and physiologically-relevant in vitro testing platforms limit the early screening of anticancer agents. A major barrier is the complex interplay between the tumor microenvironment and immune response. To tackle this, a dynamic-flow based 3D bioprinted multi-scale vascularized breast tumor model, responding to chemo and immunotherapeutics is developed.

View Article and Find Full Text PDF

Immunotherapy has revolutionized cancer treatment with the advent of advanced cell engineering techniques aimed at targeted therapy with reduced systemic toxicity. However, understanding the underlying immune-cancer interactions require development of advanced three-dimensional (3D) models of human tissues. In this study, we fabricated 3D tumor models with increasing complexity to study the cytotoxic responses of CD8T cells, genetically engineered to express mucosal-associated invariant T (MAIT) cell receptors, towards MDA-MB-231 breast cancer cells.

View Article and Find Full Text PDF

Comparative photoelectrochemical studies of cadmium sulfide (CdS) nanoparticles with either hydrophilic or hydrophobic surface properties are presented. Oleylamine organic shells provided CdS nanoparticles with hydrophobic behavior, affecting the photoelectrochemical properties of such nanostructured semiconductor. Hydrophilic CdS nanoparticles were drop-cast on the electrode, whereas the hydrophobic ones were transferred in a controlled manner with Langmuir-Blodgett technique.

View Article and Find Full Text PDF

The orange carotenoid protein (OCP) plays an important role in photoprotection in cyanobacteria, which is achieved by the photoconversion from the orange dark state (OCP) to the red active state (OCP). Using Raman optical activity (ROA), we studied the conformations of the carotenoid chromophore in the active sites of OCP and OCP. This ROA measurement directly observed the chromophore conformation of native OCP in solution, and the measurement of OCP first demonstrated the ROA spectroscopy for the transient species.

View Article and Find Full Text PDF