Publications by authors named "Molykutty J Aryankalayil"

Radiation injury, either from radiotherapy or a mass-casualty event requires a health care system that can efficiently allocate resources to patients. We conducted a comprehensive transcriptome analysis of whole blood from a nonhuman primate model that received upper thoracic radiation (9.8-10.

View Article and Find Full Text PDF

Treatments involving radiation and chemotherapy alone or in combination have improved patient survival and quality of life. However, cancers frequently evade these therapies due to adaptation and tumor evolution. Given the complexity of predicting response based solely on the initial genetic profile of a patient, a predetermined treatment course may miss critical adaptation that can cause resistance or induce new targets for drug and immunotherapy.

View Article and Find Full Text PDF

Whole- or partial-body exposure to ionizing radiation damages major organ systems, leading to dysfunction on both acute and chronic timescales. Radiation medical countermeasures can mitigate acute damages and may delay chronic effects when delivered within days after exposure. However, in the event of widespread radiation exposure, there will inevitably be scarce resources with limited countermeasures to distribute among the affected population.

View Article and Find Full Text PDF

Immunotherapy has revolutionized the clinical management of many malignancies but is infrequently associated with durable objective responses when used as a standalone treatment approach, calling for the development of combinatorial regimens with superior efficacy and acceptable toxicity. Radiotherapy, the most commonly used oncological treatment, has attracted considerable attention as a combination partner for immunotherapy owing to its well-known and predictable safety profile, widespread clinical availability, and potential for immunostimulatory effects. However, numerous randomized clinical trials investigating radiotherapy-immunotherapy combinations have failed to demonstrate a therapeutic benefit compared with either modality alone.

View Article and Find Full Text PDF

Purpose: Previous research has highlighted the impact of radiation damage, with cancer patients developing acute disorders including radiation induced pneumonitis or chronic disorders including pulmonary fibrosis months after radiation therapy ends. We sought to discover biomarkers that predict these injuries and develop treatments that mitigate this damage and improve quality of life.

Materials And Methods: Six- to eight-week-old female C57BL/6 mice received 1, 2, 4, 8, 12 Gy or sham whole body irradiation.

View Article and Find Full Text PDF

Radiation injury from medical, accidental, or intentional sources can induce acute and long-term hepatic dysregulation, fibrosis, and cancer. This long-term hepatic dysregulation decreases quality of life and may lead to death. Our goal in this study is to determine acute changes in biological pathways and discover potential RNA biomarkers predictive of radiation injury.

View Article and Find Full Text PDF

Recent and past research have highlighted the importance of the endothelium in the manifestation of radiation injury. Our primary focus is on medical triage and management following whole body or partial-body irradiation. Here we investigated the usability of endothelial cells' radiation response for biodosimetry applications.

View Article and Find Full Text PDF

In a mass radiation exposure, the healthcare system may rely on differential expression of miRNA to determine exposure and effectively allocate resources. To this end, miRNome analysis was performed on non-human primate serum after whole thorax photon beam irradiation of 9.8 or 10.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how different radiation doses (single vs multifractionated) affect gene expression and protein activity in prostate cancer cells, ultimately influencing the effectiveness of molecularly-targeted therapies.* -
  • After irradiating cells, researchers observed long-term changes in the activation of pathways related to cell survival and migration, particularly notable 24 hours post multifractionated irradiation or two months after a single high dose.* -
  • Cells exposed to a single high-dose radiation showed increased sensitivity to certain targeted drugs, suggesting that understanding radiation-induced molecular changes could enhance treatment outcomes for prostate cancer patients.*
View Article and Find Full Text PDF

The expression of immune-related genes in cancer cells can alter the anti-tumor immune response and thereby impact patient outcomes. Radiotherapy has been shown to modulate immune-related genes dependent on the fractionation regimen. To identify long-term changes in gene expression after irradiation, PC3 (p53 deleted) and LNCaP (p53 wildtype) prostate cancer cells were irradiated with either a single dose (SD, 10 Gy) or a fractionated regimen (MF) of 10 fractions (1 Gy per fraction).

View Article and Find Full Text PDF

Gottingen minipigs mirror the physiological radiation response observed in humans and hence make an ideal candidate model for studying radiation biodosimetry for both limited-sized and mass casualty incidents. We examined the whole blood gene expression profiles starting one day after total-body irradiation with increasing doses of gamma-rays. The minipigs were monitored for up to 45 days or time to euthanasia necessitated by radiation effects.

View Article and Find Full Text PDF

Long non-coding RNAs (lncRNAs) have been shown to impact important biological functions such as proliferation, survival, and genomic stability. To analyze radiation-induced lncRNA expression in human tumors, we irradiated prostate cancer cells with a single dose of 10 Gy or a multifractionated radiotherapeutic regimen of 10 fractions with a dose of 1 Gy (10 × 1 Gy) during 5 days. We found a stable upregulation of the lncRNA and at 2 months after radiotherapy that was more pronounced after single-dose irradiation.

View Article and Find Full Text PDF

Once thought of as arising from "junk DNA," noncoding RNAs (ncRNAs) have emerged as key molecules in cellular processes and response to stress. From diseases such as cancer, coronary artery disease, and diabetes to the effects of ionizing radiation (IR), ncRNAs play important roles in disease progression and as biomarkers of damage. Noncoding RNAs regulate cellular processes by competitively binding DNA, mRNA, proteins, and other ncRNAs.

View Article and Find Full Text PDF

In the event of a major accidental or intentional radiation exposure incident, the affected population could suffer from total- or partial-body exposures to ionizing radiation with acute exposure to organs that would produce life-threatening injury. Therefore, it is necessary to identify markers capable of predicting organ-specific damage so that appropriate directed or encompassing therapies can be applied. In the current work, gene expression changes in response to total-body irradiation (TBI) were identified in heart, lungs and liver tissue of Göttingen minipigs.

View Article and Find Full Text PDF

Radiotherapy is highly effective due to its ability to physically focus the treatment to target the tumor while sparing normal tissue and its ability to be combined with systemic therapy. This systemic therapy can be utilized before radiotherapy as an adjuvant or induction treatment, during radiotherapy as a radiation "sensitizer," or following radiotherapy as a part of combined modality therapy. As part of a unique concept of using radiation as "focused biology," we investigated how tumors and normal tissues adapt to clinically relevant multifraction (MF) and single-dose (SD) radiation to observe whether the adaptations can induce susceptibility to cell killing by available drugs or by immune enhancement.

View Article and Find Full Text PDF

Multifractionated irradiation is the mainstay of radiation treatment in cancer therapy. Yet, little is known about the cellular DNA repair processes that take place between radiation fractions, even though understanding the molecular mechanisms promoting cancer cell recovery and survival could improve patient outcome and identify new avenues for targeted intervention. To address this knowledge gap, we systematically characterized how cells respond differentially to multifractionated and single-dose radiotherapy, using a combination of genetics-based and functional approaches.

View Article and Find Full Text PDF

Adaptation of tumor cells to radiotherapy induces changes that are actionable by molecular targeted agents and immunotherapy. This report demonstrates that radiation-induced changes in integrin expression can be targeted 2 months later. Integrins are transmembrane cell adhesion molecules that are essential for cancer cell survival and proliferation.

View Article and Find Full Text PDF

Context: Accidental exposure to life-threatening radiation in a nuclear event is a major concern; there is an enormous need for identifying biomarkers for radiation biodosimetry to triage populations and treat critically exposed individuals.

Objective: To identify dose-differentiating miRNA signatures from whole blood samples of whole body irradiated mice.

Methods: Mice were whole body irradiated with X-rays (2 Gy-15 Gy); blood was collected at various time-points post-exposure; total RNA was isolated; miRNA microarrays were performed; miRNAs differentially expressed in irradiated vs.

View Article and Find Full Text PDF

Long noncoding RNAs (lncRNAs) are emerging as key molecules in regulating many biological processes and have been implicated in development and disease pathogenesis. Biomarkers of cancer and normal tissue response to treatment are of great interest in precision medicine, as well as in public health and medical management, such as for assessment of radiation injury after an accidental or intentional exposure. Circulating and functional RNAs, including microRNAs (miRNAs) and lncRNAs, in whole blood and other body fluids are potential valuable candidates as biomarkers.

View Article and Find Full Text PDF

Implementing targeted drug therapy in radio-oncologic treatment regimens has greatly improved the outcome of cancer patients. However, the efficacy of molecular targeted drugs such as inhibitory antibodies or small molecule inhibitors essentially depends on target expression and activity, which both can change during the course of treatment. Radiotherapy has previously been shown to activate prosurvival pathways, which can help tumor cells to adapt and thereby survive treatment.

View Article and Find Full Text PDF

Radiotherapy is under investigation for its ability to enhance responses to immunotherapy. However, the mechanisms by which radiation induces anti-tumour T cells remain unclear. We show that the DNA exonuclease Trex1 is induced by radiation doses above 12-18 Gy in different cancer cells, and attenuates their immunogenicity by degrading DNA that accumulates in the cytosol upon radiation.

View Article and Find Full Text PDF

New technologies enabling the analysis of various molecules, including DNA, RNA, proteins and small metabolites, can aid in understanding the complex molecular processes in cancer cells. In particular, for the use of novel targeted therapeutics, elucidation of the mechanisms leading to cell death or survival is crucial to eliminate tumor resistance and optimize therapeutic efficacy. While some techniques, such as genomic analysis for identifying specific gene mutations or epigenetic testing of promoter methylation, are already in clinical use, other "omics-based" assays are still evolving.

View Article and Find Full Text PDF