Two of the most pressing challenges facing bioimaging are nonspecific uptake of intravenously administered contrast agents and incomplete elimination of unbound targeted agents from the body. Designing a targeted contrast agent that shows fast clearance from background tissues and eventually the body after complete targeting is key to the success of image-guided interventions. Here, this work describes the development of renally clearable near-infrared contrast agents and their potential use for dual-channel image-guided tumor targeting.
View Article and Find Full Text PDFBackground: Due to the deep tissue penetration and reduced scattering, NIR-II fluorescence imaging is advantageous over conventional visible and NIR-I fluorescence imaging for the detection of bone growth, metabolism, metastasis, and other bone-related diseases.
Methods: Bone-targeted heptamethine cyanine fluorophores were synthesized by substituting the meso-carbon with a sulfur atom, resulting in a bathochromic shift and increased fluorescence intensity. The physicochemical, optical, and thermal stability of newly synthesized bone-targeted NIR fluorophores was performed in aqueous solvents.