Congenital diaphragmatic hernia (CDH) has been reported twice in individuals with a clinical diagnosis of Fraser syndrome, a genetic disorder that can be caused by recessive mutations affecting FREM2 and FRAS1. In the extracellular matrix, FREM2 and FRAS1 form a self-stabilizing complex with FREM1, a protein whose deficiency causes sac CDH in humans and mice. By sequencing FREM2 and FRAS1 in a CDH cohort, and searching online databases, we identified five individuals who carried recessive or double heterozygous, putatively deleterious variants in these genes which may represent susceptibility alleles.
View Article and Find Full Text PDFBy searching a clinical database of over 60,000 individuals referred for array-based CNV analyses and online resources, we identified four males from three families with intellectual disability, developmental delay, hypotonia, joint hypermobility and relative macrocephaly who carried small, overlapping deletions of Xp11.22. The maximum region of overlap between their deletions spanned ~430 kb and included two pseudogenes, CENPVL1 and CENPVL2, whose functions are not known, and two protein coding genes-the G1 to S phase transition 2 gene (GSPT2) and the MAGE family member D1 gene (MAGED1).
View Article and Find Full Text PDFCongenital heart defects (CHD) are present in over 1% of all newborns and are the leading cause of birth-defect-related deaths in the United States. We describe two male subjects with CHD, one with an atrial septal defect, a ventricular septal defect, and pulmonary artery stenosis; and the other with tetralogy of Fallot and a right aortic arch, who carry partially overlapping, de novo deletions of chromosome 5q33. The maximum region of overlap between these deletions encompasses HAND1 and SAP30L, two genes that have previously been shown to play a role in cardiac development.
View Article and Find Full Text PDFBackground: The non-POU domain containing octamer-binding gene (NONO) is located on chromosome Xq13.1 and encodes a member of a small family of RNA-binding and DNA-binding proteins that perform a variety of tasks involved in RNA synthesis, transcriptional regulation and DNA repair. Loss-of-function variants in NONO have been described as a cause of intellectual disability in males but have not been described in association with congenital heart defects or cardiomyopathy.
View Article and Find Full Text PDF