Publications by authors named "Molly Hyde"

Background And Objective: Repetitive transcranial magnetic stimulation (rTMS) is a safe and effective treatment for major depressive disorder (MDD); however, this treatment currently lacks reliable biomarkers of treatment response. TMS-evoked potentials (TEPs), measured using TMS-electroencephalography (TMS-EEG), have been suggested as potential biomarker candidates, with the N100 peak being one of the most promising. This study investigated the association between baseline N100 amplitude and 1 Hz right dorsolateral prefrontal cortex (R-DLPFC) accelerated rTMS (arTMS) treatment in MDD.

View Article and Find Full Text PDF
Article Synopsis
  • Dysfunctional sensory gating in anxiety disorders may be linked to issues with the inhibitory neurotransmitter GABA, as indicated by P50 event-related potentials (ERPs).
  • A study with 30 healthy participants tested the effects of GABA agonists (lorazepam and baclofen) on auditory sensory gating and looked for correlations with self-reported anxiety levels.
  • Results showed that lorazepam reduced sensory gating responses, while baclofen's effects correlated with trait anxiety, suggesting that GABA plays a role in sensory gating and anxiety regulation.
View Article and Find Full Text PDF

Auditory cortical plasticity deficits in schizophrenia are evidenced with electroencephalographic (EEG)-derived biomarkers, including the 40-Hz auditory steady-state response (ASSR). Aiming to understand the underlying oscillatory mechanisms contributing to the 40-Hz ASSR, we examined its response to transcranial alternating current stimulation (tACS) applied bilaterally to the temporal lobe of 23 healthy participants. Although not responding to gamma tACS, the 40-Hz ASSR was modulated by theta tACS (vs sham tACS), with reductions in gamma power and phase locking being accompanied by increases in theta-gamma phase-amplitude cross-frequency coupling.

View Article and Find Full Text PDF

Background And Objective: Repetitive transcranial magnetic stimulation (rTMS) is an effective and safe treatment for major depressive disorder (MDD). rTMS is in need of a reliable biomarker of treatment response. High frequency (HF) dorsolateral prefrontal cortex (DLPFC) rTMS has been reported to induce significant changes in the cardiac activity of MDD patients.

View Article and Find Full Text PDF

In schizophrenia, a disorder associated with N-methyl-D-aspartate receptor (NMDAR) hypofunction, auditory cortical plasticity deficits have been indexed by the synchronized electroencephalographic (EEG) auditory steady-state gamma-band (40-Hz) response (ASSR) and the early auditory evoked gamma-band response (aeGBR), both considered to be target engagement biomarkers for NMDAR function, and potentially amenable to treatment by NMDAR modulators. As transcranial direct current stimulation (tDCS) is likely dependent on NMDAR neurotransmission, this preliminary study, conducted in 30 healthy volunteers, assessed the off-line effects of prefrontal anodal tDCS and sham (placebo) treatment on 40-Hz ASSR and aeGBR. Anodal tDCS failed to alter aeGBR but increased both 40-Hz ASSR power, as measured by event-related spectral perturbations (ERSP), and phase locking, as measured by inter-trial phase consistency (ITPC).

View Article and Find Full Text PDF

Although effective in major depressive disorder (MDD), repetitive transcranial magnetic stimulation (rTMS) is costly and complex, limiting accessibility. To address this, we tested the feasibility of novel rTMS techniques with cost-saving opportunities, such as an open-room setting, large non-focal parabolic coils, and custom-built coil arms. We employed a low-frequency (LF) 1 Hz stimulation protocol (360 pulses per session), delivered on the most affordable FDA-approved device.

View Article and Find Full Text PDF

Objective: The effects of GABA modulating drugs and nicotine, the prototypical nicotinic cholinergic agonist, on attention have been investigated using subcomponents of the P300 event-related potentials (ERP), which index involuntary (P3a) and voluntary attention (P3b). However, investigations into how such pharmacologic effects interact with genetic features in the GABA system remain unclear. This study examined the moderating effects of a single nucleotide polymorphism (rs7557793) in the glutamic acid decarboxylase 67 (GAD1) gene, which is implicated in the conversion of glutamate to GABA, on P300-indices of auditory attentional processing; the influence of nicotine administration was also assessed.

View Article and Find Full Text PDF

Schizophrenia (SZ) is a psychiatric disorder characterized by cognitive dysfunction within the realm of attentional processing. Reduced P3a and P3b event-related potentials (ERPs), indexing involuntary and voluntary attentional processing respectively, have been consistently observed in SZ patients who also express prominent cholinergic deficiencies. The involvement of the brain's cholinergic system in attention has been examined for several decades; however, further inquiry is required to further comprehend how abnormalities in this system affect neighbouring neurotransmitter systems and contribute to neurocognitive deficits.

View Article and Find Full Text PDF

Schistosomiasis control programs aim to reduce morbidity but are evaluated by infection prevalence and intensity reduction. We present baseline cross-sectional data from a nested cohort study comparing indicators of morbidity for measuring program impact. Eight hundred twenty-two schoolchildren 7-8 years of age from Nyanza Province, Kenya, contributed stool for diagnosis of Schistosoma mansoni and soil-transmitted helminths (STH) and blood smears for malaria, and were evaluated for anemia, quality of life, exercise tolerance, anthropometry, and ultrasound abnormalities.

View Article and Find Full Text PDF

Telomere elongation is cell-cycle regulated and requires the coordinated activity of proteins involved in the DNA damage response. We used an assay that detects de novo telomere addition to examine the role of the cyclin-dependent kinase Cdk1 (Cdc28) in cell-cycle-specific telomere elongation. Inhibition of an ATP analog-sensitive allele of Cdk1 completely blocked the addition of telomere repeats.

View Article and Find Full Text PDF