Publications by authors named "Molly Craxton"

Alzheimer's Disease (AD) is characterized by the pathologic assembly of amyloid β (Aβ) peptide, which deposits into extracellular plaques, and tau, which accumulates in intraneuronal inclusions. To investigate the link between Aβ and tau pathologies, experimental models featuring both pathologies are needed. We developed a mouse model featuring both tau and Aβ pathologies by knocking the P290S mutation into murine and crossing these knock-in (KI) mice with the KI line.

View Article and Find Full Text PDF

Background: Synaptotagmin proteins were first identified in nervous tissue, residing in synaptic vesicles. Synaptotagmins were subsequently found to form a large family, some members of which play important roles in calcium triggered exocytic events. These members have been investigated intensively, but other family members are not well understood, making it difficult to grasp the meaning of family membership in functional terms.

View Article and Find Full Text PDF

Human interleukin-24 (IL-24) is unique among the IL-10 superfamily as there is considerable evidence that it possesses multiple anti-cancer properties, including direct tumor cell cytotoxicity, helper T cell (TH1) immune stimulation, and anti-angiogenic activities. The primary sequence of human IL-24 differs from homologous cytokines, because it possesses three consensus N-linked glycosylation sites and the potential for a single disulfide bond. To address the significance of these modifications in human IL-24, we analyzed the relationship between post-translational modifications and the cytokine activity of the human IL-24 protein.

View Article and Find Full Text PDF

Background: Synaptotagmin genes are found in animal genomes and are known to function in the nervous system. Genes with a similar domain architecture as well as sequence similarity to synaptotagmin C2 domains have also been found in plant genomes. The plant genes share an additional region of sequence similarity with a group of animal genes named FAM62.

View Article and Find Full Text PDF

In humans, three genes encode the related alpha-, beta-, and gamma-synucleins, which function as lipid-binding proteins in vitro. They are being widely studied, mainly because of the central involvement of alpha-synuclein in a number of neurodegenerative diseases, including Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy. In these diseases, the normally soluble alpha-synuclein assembles into abnormal filaments.

View Article and Find Full Text PDF

Filamentous tau deposits are a defining feature of a number of human neurodegenerative diseases. Apes and monkeys have been reported to be differentially susceptible to developing tau pathology. Despite this, only little is known about the organisation and sequence of Tau from nonhuman primates.

View Article and Find Full Text PDF

Background: Synaptotagmins exist as a large gene family in mammals. There is much interest in the function of certain family members which act crucially in the regulated synaptic vesicle exocytosis required for efficient neurotransmission. Knowledge of the functions of other family members is relatively poor and the presence of Synaptotagmin genes in plants indicates a role for the family as a whole which is wider than neurotransmission.

View Article and Find Full Text PDF

Intracellular membrane traffic is governed by a conserved set of proteins, including Syts (synaptotagmins). The mammalian Syt family includes 15 isoforms. Syts are membrane proteins that possess tandem C2 domains (C2AB) implicated in calcium-dependent phospholipid binding.

View Article and Find Full Text PDF

Synaptotagmins are membrane proteins that possess tandem C2 domains and play an important role in regulated membrane fusion in metazoan organisms. Here we show that both synaptotagmins I and II, the two major neuronal isoforms, can interact with the syntaxin/synaptosomal-associated protein of 25 kDa (SNAP-25) dimer, the immediate precursor of the soluble NSF attachment protein receptor (SNARE) fusion complex. A stretch of basic amino acids highly conserved throughout the animal kingdom is responsible for this calcium-independent interaction.

View Article and Find Full Text PDF

The identification of mutations in the Tau gene in frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17) has made it possible to express human tau protein with pathogenic mutations in transgenic animals. Here we report on the production and characterization of a line of mice transgenic for the 383 aa isoform of human tau with the P301S mutation. At 5-6 months of age, homozygous animals from this line developed a neurological phenotype dominated by a severe paraparesis.

View Article and Find Full Text PDF