Background: Breast-conserving surgery is aimed at removing all cancerous cells while minimizing the loss of healthy tissue. To ensure a balance between complete resection of cancer and preservation of healthy tissue, it is necessary to assess themargins of the removed specimen during the operation. Deep ultraviolet (DUV) fluorescence scanning microscopy provides rapid whole-surface imaging (WSI) of resected tissues with significant contrast between malignant and normal/benign tissue.
View Article and Find Full Text PDFPositive margin status after breast-conserving surgery (BCS) is a predictor of higher rates of local recurrence. Intraoperative margin assessment aims to achieve negative surgical margin status at the first operation, thus reducing the re-excision rates that are usually associated with potential surgical complications, increased medical costs, and mental pressure on patients. Microscopy with ultraviolet surface excitation (MUSE) can rapidly image tissue surfaces with subcellular resolution and sharp contrasts by utilizing the nature of the thin optical sectioning thickness of deep ultraviolet light.
View Article and Find Full Text PDFObjectives: Assess the pathologic changes in the lungs of COVID-19 decedents and correlate these changes with demographic data, clinical course, therapies, and duration of illness.
Methods: Lungs of 12 consecutive COVID-19 decedents consented for autopsy were evaluated for gross and histopathologic abnormalities. A complete Ghon "en block" dissection was performed on all cases; lung weights and gross characteristics recorded.
Significance: Re-excision rates for women with invasive breast cancer undergoing breast conserving surgery (or lumpectomy) have decreased in the past decade but remain substantial. This is mainly due to the inability to assess the entire surface of an excised lumpectomy specimen efficiently and accurately during surgery.
Aim: The goal of this study was to develop a deep-ultraviolet scanning fluorescence microscope (DUV-FSM) that can be used to accurately and rapidly detect cancer cells on the surface of excised breast tissue.